Detect and track people aerially over Stanford
campus

Priyanka Dwivedi
Department of Computer Science
Stanford University
pdwivedi@stanford.edu
Github Link: Retina Net Github

Abstract

Object Detection in Aerial Images is a challenging and interesting problem. With
the cost of drones decreasing, there is a surge in amount of aerial data being
generated. It is of great practical use to have models that can extract valuable
information from aerial data. Retina Net is a popular single stage detector and I
have retrained it on aerial images of pedestrians and bikers from the Stanford Drone
Data set. I have used an existing implementation of Retina Net as a starting point
and explored the effect of various parameter changes on model performance. The
best model is able to get a weighted mean average precision of 0.63 on the test set.
I have done detailed error analysis of the model. Finally I have fed the RetinaNet
detection into a tracker than can track a pedestrian or biker across frames.

1 Introduction

Object detection in aerial photographs is an important problem due to large amount of data being
generated by drones. Aerial object detection is more challenging than typical detection problems
due to much smaller sizes of objects, variable lighting conditions and occlusions through trees and
shadows. Feature Pyramid Networks is a structure for multi scale object detection introduced in [3].
Retina Net introduced in [4] uses a feature pyramid network that is trained using focal loss. I have
trained a Retina Net on Stanford Drone Data set [1] and explored the effect of various architectural
and hyper parameter changes on model performance.

The input to the model is an aerial image and the output is a list of detection. Each detection includes
class name, confidence score and the coordinates of the detected bounding box. Majority of the time
for the project was spent on tuning the detection model to work on Stanford Drone data set. In the last
2 weeks, I worked on integrating the trained detection model into the popular deep sort [7] algorithm
for tracking detection over the video. The input for tracking is a video and the trained detection
model and the output is each detection gets assigned an ID which is tracked across the video.

2 Related work

Most of the existing work in this area can be classified into two main categories: traditional approaches
that rely on handcrafted features and deep learning-based approaches that rely on a convolution neural
network (CNN) as feature extractor. Most of the recent works use deep learning models due to their
far superior performance. CNN based object detection models can be further classified into two stage
like Faster RCNN [9] that first do region proposal and single stage like YOLO [10] and RetinaNet

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

[4] that use a single model to predict both class and bounding box coordinates. One of the recent
innovations in single stage detectors has been Feature Pyramid Networks (FPN) [3] which combines
low-resolution, semantically strong features with high-resolution, semantically weak features via a
top-down pathway and lateral connections. Retina Net uses FPN with focal loss function in order to
deal with data imbalance occurred by the plenty of background objects.

I have used ideas from 3 implementations of Retina Net type model on aerial object detection.
[11] implements densely connected FPN on NWPU VHR-10 dataset consisting of aerial images
of vehicles, bridges, ships, tennis courts etc and report state of the art results. [12] uses Retina
Net on Cars Overheard data set to detect cars in high resolution aerial images. Both the above
implementations detect vehicles or other building type structures that are easier to detect aerially. [8]
detects pedestrians in high resolution aerial images collected over Prague and successfully shows
RetinaNet can be used for detecting smaller objects and is the closest to the work done in this project.
I have chosen to use Retina Net on Stanford Drone data set and did not come across any previous
work that has used this data set for aerial detection.

3 Dataset and Features

For this project we used the Stanford Drone Data Set [1]. This data set consists of 60 videos shot
through a UAV/Drone over 8 different locations across the Stanford campus. Each video includes
annotations for 6 different classes of objects - Pedestrian, Biker, Skateboarder, Cart, Car and Bus.
The Pedestrian and Biker class consist of 85% to 95% of the total annotations.

The data set is challenging for an object detection problem since each class is only a few pixels wide
as shown in sample images in Figure 1. Some images also have objects occluded or under shade.
These images are from hyang and deathcircle locations. The annotations show Pedestrians in pink
and Bikers in red.

Figure 1: Stanford Drone Data Set sample images - Hyang and Death Circle locations

The training data was created by taking 12 videos across the 8 locations. Each video varies in length
from 2 min to 12 minutes. 1 in every 30 frames was selected and put into the training set. This
was done so we can capture frames roughly a second apart. The training set consists of 2600 test
images with 35,600 annotations. Images from different videos vary in size but typical resolution is
1400x1100. Videos from the same location look different due to material changes in background. To
allow the model to generalize better we chose a different set of 8 videos to be part of test/validation
set. For these videos as well we sampled 1 in 30 frames. The first half of each video was used to
sample frames for validation and the second half for testing. 5 % of the frames from validation and
test videos were also put in training to allow the model to generalize better. Overall both validation
and test set had around 600 images each with roughly 6800 annotations. No pre processing was done
on the images before passing it to Retina Net.

4 Methods

4.1 RetinaNet model for object detection

Retina Net is a single stage detector that uses Feature Pyramid Network (FPN) and Focal loss for
training. Convolution networks produce feature maps layer by layer and due to pooling operation the

feature maps have a natural pyramidal shape. However one problem is that there are large semantic
gaps between different layers of features. The high resolution maps (earlier layers) have low-level
features that harm their representational capacity for object detection. Feature pyramid network solve
this by combines low-resolution, semantically strong features with high-resolution, semantically
weak features via a top-down pathway and lateral connections. The net result is that it produces
feature maps of different scale on multiple levels in the network which helps with both classifier and
regressor networks.

The Focal Loss is designed to address the single-stage object detection problems with the imbalance
where there is a very large number of possible background classes and just a few foreground classes.
This causes training to be inefficient as most locations are easy negatives that contribute no useful
signal and the massive amount of these negative examples overwhelm the training and reduces model
performance. Focal loss is based on cross entropy loss as shown below and by adjusting the
parameter, we can reduce the loss contribution from well classified examples.

CE(p) = —log(pt)
FL(p:) = (1 —pt)"log(p:)

4.2 Deep sort model for object tracking

The deep sort model introduced in [7] expands the popular SORT model used in object tracking by
including in it appearance information for every detection. The appearance information is calculated
by computing a 128 dimensional feature vector using a CNN.

SORT [13] is a simple framework that uses a kalman filter for tracking. While it is a good starting
point, it suffers from a high number of identity switches especially in cases of occlusion or crowded
scenes. This is, because the employed association metric is only accurate when state estimation
uncertainty is low. The deep sort algorithm integrates into SORT, appearance information using a
(CNN) that has been trained to discriminate pedestrians on a large-scale person re-identification data
set. Deep sort model achieves state of the art result on MOT data set [14]. For this project I integrated
the trained Retina Net model into the deep sort tracker such that detection for each frame are fed into
the tracker real time as the frame is processed.

5 Experiments/Results/Discussion

5.1 Experiments on RetinaNet

For training the Retina Net model on Stanford Drone data set, I used the Keras Implementation of
Retina Net in [4] as the starting point. This implementation provides pretrained weights for Resnet
50 backbone on MS COCO data set [5] and an option to train Retina Net on custom data. I ran
many different experiments on the Retina Net and the main are listed below. Table 1 shows the mean
average precision (MAP) on the test set for these experiments.

1. Transfer Learning - I tried using MSCOCO weights as the starting point, using a previous trained
checkpoint as the starting point and training from scratch. For the very first iteration MSCOCO
weights were used as a staring point. After that I saw results were much better if a previous checkpoint
was used.

2. Freezing backbone - The model allows us to freeze the weights of the Resnet 50 backbone and
train just the feature pyramid network. This significantly reduces training time for each epoch from
45 minutes to 18 minutes. Using a previous checkpoint to initialize weights and freeze backbone
allowed me to train the model longer and better lower loss.

3. Backbone model - I experimented with 4 backbones - ResNet50, ResNet101, Mobilenet128 and
DenseNet121. Pretrained MSCOCO weights are provided for only ResNet50 backbones. The other
3 models were trained from scratch. The performance on a Resnet50 backbone was much better
than the other models. Training from scratch requires a lot of data as well as very careful tuning of
parameters and due to lack of these, transfer learning approach worked much better.

4. Choosing smaller anchors -The RetinaNet model uses 5 default anchor boxes of size 32, 64, 128,
256 and 512. Figure 2 shows in green annotations that are captured by default anchor boxes and in
red those that are missed. Substituting the 512 sized anchor box with an anchor box of size 16 allows

Experiment Biker | Car Bus Pedestrian | Weighted

Resnet50 from MSCOCO weights 0.4879 | 0.952 | 0.857 | 0.5 0.5048

Resnet50 from MSCOCO and smaller an- | 0.486 0.936 | 0.789 0.7059 0.6374
chors

Resnet50 from checkpoint, smaller anchors, | 0.5983 | 0 0.4486 | 0.6532 0.6328
frozen backbone*

Resnet50 from checkpoint, smaller anchors, | 0.5409 | 0 0.5112 | 0.5737 0.5643
frozen backbone, random augmentations

Resnetl101 from scratch, small anchors 03013 [O 0.5311 | 0.3244 0.3148
Mobilenet128 backbone from scratch, | 0.0001 | O 0 0.0003 0.0003

small anchors

Table 1: Mean Average Precision from RetinaNet model. * From this exptt onwards test was changed
and this test set had no cars as this is an infrequent class

us to capture most of the annotations in this data set which are smaller in size. Early experimented
showed that adding the smaller anchor had a noticeable jump in mean average precision and this step
was done for all subsequent experiments

Figure 2: Left: RetinaNet with default anchor boxes, Right: Adding a small anchor box of size 16

5. Other Changes - Besides these I also tried random image augmentations, lower learning rate,
change to non max suppression threshold, increase input image size etc. None of these changes had a
material impact on map scores.

As the above section shows best results were obtained by using a Resnet50 backbone, initializing
it with previous checkpoint, freezing backbone and using small anchors. This model results in a
weighted average mean average precision of 0.63 on test set and 0.68 on validation set.

5.2 Error Analysis

I also did a detailed error analysis of the model predictions. This was done by looking at all ground
truth and predicted bounding boxes on the test set and classifying into 4 classes: 1. True Positive - If
there was a ground truth bounding and predicted bounding box with Intersection over Union (IOU)
> 0.5 and the same class 2. Class Mismatch - If there was a ground truth bounding and predicted
bounding box with IOU > 0.5 but different class 3. False Positive - Predicted bounding box has
no corresponding ground truth bounding box 4.False Negative - Ground truth bounding box has no
corresponding predicted box

The figure 3 shows the results of error analysis on 2 images.

Error analysis of the model shows some reasons for low map - 1. The model does get confused
between the biker and pedestrian class as it can be difficult to distinguish them aerially if there are
no shadows, 2. Occluded and in shadow objects are also annotated in ground truth data but are
almost impossible to detect and these generate false negative predictions. 3. Shadows from trees can
sometimes get predicted as an object.

Figure 3: Error Analysis of the model- True Positive - Green, Class mismatch - yellow, false positive
- red, false negative - blue

5.3 Tracking using deep sort

I also fed the detection into the deep sort tracker model which assigns ID to a detection and tracks
in subsequent frames. An existing implementation of deep sort tracker [15] was used but it was
integrated within the Retina Net code. The deep sort model worked well in tracking across frames if
the detection were separated out in space but struggled with ID switching for detection very close to
each other. This is because the deep features are not able to extract meaningful information from the
small bounding boxes. But it was a great learning to be able to integrate the detection model in the
tracker. Using deep sort model can be a starting point but more time needs to be invested into the
problem to have a high accuracy tracker. The figure 4 below shows the model tracking across two
different frames.

Figure 4: Results from deep sort tracker on quad video

6 Conclusion/Future Work

I trained the RetinaNet model on aerial images from Stanford Drone data set. The experiments
done here confirm that Retina Net can be trained to perform quite well on aerial images by adding a
smaller anchor box. I got the best results by using a Resnet50 backbone and using transfer learning
to initialize weights. The main weakness of the current model is that it suffers from mis predictions
between pedestrian and biker classes and gets confused by shadows or other smaller object on the
ground. I also integrated RetinaNet into deep sort tracker which is able to track detections across
frames for videos that are not very crowded. As a next step, it would be good to integrate tracking
results into the detection model since tracking can provide us the speed of movement of the box
which can help distinguish between a biker and pedestrian. Aerial detection of people is a tough
problem and to truly generalize it would be good to combine data from multiple data sets so model
learns to recognize people against a variety of backgrounds.

7 Contributions

This project was done as a single person team.

References

[1] A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning Social Etiquette: Human Trajectory Prediction
In Crowded Scenes in European Conference on Computer Vision (ECCV), 2016.

[2] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar, Focal Loss for Dense Object Detection,
arXiv:1708.02002

[3] Lin, T.-Y.; Dolldr, P.; et al. Feature Pyramid Networks for Object De- tection. ArXiv e-prints, Dec. 2016,
1612.03144.

[4] Keras RetinaNet Model - https://github.com/fizyr/keras-retinanet
[5S]1MS COCO Data Set - http://cocodataset.org

[7] Nicolai Wojke, Alex Bewley, Dietrich Paulus. Simple Online and Realtime Tracking with a Deep Association
Metric. arXiv:1703.07402

[8] Filip Bouska, Localization and Counting of Humans based on Satellite and Aerial Imagery

[9] Shaoging Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. ArXiv e-prints, Jun. 2015, arXiv:1506.01497

[10] Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection;
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV,
USA. 27-30 June 2016.

[11] Hilal Tayaral and Kil To Chong2, Object Detection in Very High-Resolution Aerial Images Using One-Stage
Densely Connected Feature Pyramid Network

[12] Arthur Douillard, https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-
aerial-imagery-2465078db8a9

[13] A. Bewley, G. Zongyuan, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in ICIP, 2016,
pp. 3464-3468.

[14] L. Leal-Taixe, A. Milan, L. Reid, S. Roth, and K. Schindler, “MOTChallenge 2015: Towards a benchmark
for multi-target tracking,” arXiv:1504.01942 [cs], 2015.

[15] Deep Sort Tracker Implementation - https://github.com/nwojke/deepsort

