Generating websites from mockups using GANSs

Siddhant P.Pardeshi Pranit Kothari
SCPD SCPD
sidppar@stanford.edu pranit@stanford.edu
Abstract

Front-end web development is a creative process, frequently involving transforma-
tion of UX mockups into code. Recent studies in Generative Adversarial Networks
(GANSs) (1) have experimented with generating images of nature and everyday
items. This study explores the application of GANs in applying style transfer on
websites, particularly in transferring fonts and colors across different style domains.
A fine-tuned version of the CycleGAN architecture is used for the model and
qualitative and quantitative analyses are presented.

1 Introduction

One of the primary roles of front-end developers involves developing UI (User Interface) code based
on Design mockups created by UX (User Experience) engineers. Product teams sometimes like
to experiment with multiple variants of a design. However, as this is largely a manual process
involving a significant turnaround time, such iterations are costly, leading to a slow churn for the
Idea — Experiment — Implement circle. With recent advances in deep learning, we believe it is
possible to automate this process of GUI code generation from mockups, making it easier for product
teams to iterate and AB Test different variations for effectiveness. Such variations themselves can
also be generated by neural networks, which adds to our interest in this field.

With the above goal in mind, this project presents a model that transfer style (color and font) from
website domain to another. This can be useful when adding a new layout to website that already
exists on another website, but possibly in a different style. The model helps visualise the layout of
domain A in the style of domain B.

The input to our algorithm is an image of a website from domain A. We then use a neural network to
output an image that represents the website with the layout of domain A and style of domain B.

2 Related work

Style transfer on paintings and landscapes using neural networks has been the subject of several
works in recent times. For instance, Gatys et.al (2) explored style transfer without GANs while Zhu
et.al (3) and Isola et.al (5) explored it using GAN-based architectures.

Of these, approaches using GANs have been found to perform better than those without GANs. Using
GANs for style transfer thus is now a state-of-the-art approach. The process usually doesn’t need any
manual hand engineering. Thus far natural landscapes and paintings have been the subject of style
transfer, but the concept has not been popularly applied on websites at the time of writing. This study
aims to undertake the novel task of applying style transfer on websites, using state-of-the-art GAN
techniques.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3 Dataset and Features

The study involves analysis on two datasets. One dataset represents real-world screenshots of actual
websites, specifically Amazon and Flipkart, two major e-commerce platforms in India. This dataset
contains 10718 manually captured screenshot images in RGB domain, each of dimensions 512 * 512.
Of these, 10000 images were randomly selected for train set and 718 images for dev set.

it -

B THEFLIPKARTSTORY

Book movie tickets
GET 20% BACK"
Upto 125

bookiishow

GULLYBOY

@ No Cost EMI for all .' L

Figure 1: Sample images from the Amazon and Flipkart dataset

The second dataset represents color and font-specific features in websites and consists of manually
generated content. Specifically, each image contains a table with placeholder text. For data augmenta-
tion, we used a native C-sharp HTML generator to iterate over fonts and colors for the table. During
this process, the generator creates screenshots of the rendered HTML, which are used to formulate
our dataset. These images were of dimensions 224 * 224, and 10950 in number. 10000 images were
randomly selected for the train set and 950 for dev set.

Title of table Sitle of table

(=
[St [P o [y

|Ganat Hanaed |Rofanz
i Sy [P ot [0
= —y

Figure 2: Sample images from the Generated table dataset

4 Methods

We evaluated several state-of-the-art GAN models with an Optimizing metric as per-pixel accuracy >
0.5, which is required for our website usecase and satisficing metric as per-class accuracy > 0.10. This
evaluation was carried out in the original CycleGAN (3) paper on the Cityscapes dataset, which is
based on recognizing structural features and is in one way, similar to recognizing structural elements
in websites. We place the results below for reference.

FCN-scores for different methods, evaluated on
Cityscapes labels—photo.

Loss Per-pixel acc. Per-class ace. Class IOU
CoGAN 0.45 0.11 0.08
BiGAN/ALI 0.41 0.13 0.07
SimGAN 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16
pix2pix 0.85 0.40 0.32

Figure 3: CycleGAN model comparison

Our baseline model is based on CycleGAN. It allows for unpaired image-to-image translation from
a source domain X to a target domain Y. The model learns a mapping G: X — Y such that the
distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial
loss. Because this mapping is highly under-constrained, it is coupled with an inverse mapping F:
Y — X and a cycle consistency loss is introduced to push F(G(X))~X (and vice versa).

For the mapping function G: X — Y and its discriminator Dy, the objective is expressed as:

‘CGAN(Gv DYv Xv Y) s]Eyfvpdam(y) [lOg Dy(y)]
+]E$~pdm(r) [lOg(]. - DY(G(‘T))]

where where G tries to generate images G(x) that look similar to images from domain Y, while Dy
aims to distinguish between translated samples G(x) and real samples y. G aims to minimize this
objective against an adversary D that tries to maximize it, i.e., mingmazp, Laan(G, Dy, X, Y).
A similar adversarial loss is used for the mapping function F : Y — X and its discriminator Dx as
well: i.e., minpmazrp, Laan(F, Dx, Y, X).

To satisfy backward cycle, the cycle consistency loss is given by:

Leye(G, F) = Egnpga() |1 F(G(2)) — z]|1]
+]Ey~puuu(y)[“G(F(y)) - y”l]

The full objective is:

£(G, F, Dx, Dy) =Loan(G, Dy, X, Y)
+ Loan(F, Dx,Y, X)
+ Meye(G, F),

where A controls the relative importance of the two objectives.

The aim is to solve:

G, F* = argrgl}l DI?.EB(\/ L(G,F,Dx, Dy).

The overall model can be visualized as per the image below.

Finetuned VGG16 Input_A

Title of table

s . s Generator =
’ Discriminator A J<—- - A2B N o Decision [0,1]

| ~

~
A

Tt of table .
Decision [0,1] Generated_B -—> Discriminator B ‘
@ e
——————— s

Finetuned VGG16
Cyclic_A

Title of table -

______ Generator , <~
B2A

Figure 4: Our CycleGAN Model

5 Experiments/Results/Discussion

While the CycleGAN model’s performance on datasets such as horse-to-zebra and artistic paintings
is commendable, the qualitative results on our Amazon-to-Flipkart or custom table website dataset
was not visually appealing. Hence we set out to improve performance by fine-tuning the model. Our
optimizing metric was to minimize loss and satisficing metric was a Generator A model size less than
15 MB, to enable convenient usage with mobile platforms and low-end data-transfer scenarios. We
carried out two experiments in this regards. As a first experiment we applied transfer learning to
a ResNet50 (6) model pre-trained on ImageNet (7). However, in the last softmax layer we set the
output values to 2 instead of a 1000 in the original model. We observed a Generator A loss of 0.851,
as opposed to 0.974 for the original model.

Figure 5: ResNet50 architecture with pretrained model

As a second experiment, we applied a VGG-16 (8) model pretrained on ImageNet for Discriminator
A and Discriminator B, by freezing the previous layers and training the last layer. Again, we set the
customized output layer to have 2 outputs instead of 1000. In this case we observed a loss of 0.258,
which is the better than the original and ResNet50 based models.

224x224x3 224x224x64

Eaisibis 7x7x512
%1“14@12

9 convolution+RelU
) max pooling
fully nected +ReLU
softmax

1x1x4096 1x 1x 400e
——
Finetune

Figure 6: VGG16 finetuned architecture
Performance plot for each model is presented in figure 7.

Generator A
16 - —— Pretrained
—— Orignial
—— Finetuned

loss
£

é 2‘5 EI‘] ?‘5 IIJ‘CI l:: 5 15“3 17"5 ZC‘[\

epochs

Figure 7: Generator A loss for each model

During the course of these experiments, we tweaked a number of hyper-parameters and present in
table 1 the combination that worked best.

Hyperparameter Choice Comments
Learning rate (Adam (9)) 0.0002 Based on original CycleGAN implementation
Mini-batch size 8 Based on infrastructure limitations
Number of epochs 200 Found to be optimal, for convergence

Table 1: Choice of Hyperparameters

Table 2 presents quantitative analysis of results obtained with the VGG-16 fine-tuned model on our
Tables dataset.

Model Loss Comments
Baseline 0.974 Original CycleGAN model
Pre-trained 0.852 ResNet50, on ImageNet

Fine-tuned 0.258 Pre-trained VGG-16, on ImageNet
Table 2: Model Evalutaion

Qualitative results for our experiment with the finetuned VGG-16 model can be seen in figure 8 and
figure 9.

Title of table Citle of table

Company || Gontast || Country|
(Afped ||l
Sttt | Andes |

Gentrs
\cemereial g’wuw Clfezice
Clfatraumal|” 7

Figure 8: Real A and Generated B from our Tables dataset

% No Cost EMI for all ¥ No Cost EMI for all
redit Card | Bajaj Finserv rodieCard | Bajaf Flasary

EMI EMI >3 B i EM1
UP TO 80* OFF N 3 4 JP TO 80*% OFF
Zar & bike insurance ‘ Zar & bike insurance
‘owered by ‘towared by

Figure 9: Real A and Generated B from our Websites dataset for Amazon India and Flipkart India

6 Conclusion/Future Work

CycleGAN architecture with our VGG-16 fine-tuned model offers high precision solution for website
style transfer. Results were good due to use of transfer learning and fine-tuning. Our code is uploaded
to https://github. com/siddhantpp/UiGAN

Novelties of the approach

e Lower error compared to baseline model.

e Ability to transfer font and themes across website domains, a hitherto unexplored area.

7 Contributions

Both authors contributed equally to the project in every aspect, starting from conceptualization of the
idea to writing the code and interpreting the results, along with writing the report. Working in the
same corporate office and team allowed us to sit together and spend time after working hours for all
course deliverables.

References

[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio,
Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp.
2672-2680).

[2] Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576.

[3] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 2223-2232).

[4] CycleGAN code implementation - https://junyanz.github.io/CycleGAN/

[5] Isola, P, Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1125-1134).

[6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[7] ImageNet website - http://www.image-net.org/

[8] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[9] Kingma, D. P,, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[10] Pytorch and torchvision libraries - https://pytorch.org/

