Teaching Your MAML

Gleb Shevchuk

Stanford Computer Science

Abstract—Meta learning is incredibly exciting because it
promises to learn generalized policies across tasks. However,
meta learning is held back by the practical assumption that
meta-training tasks are sampled from a known distribution. In
practice, it is very hard to define this distribution. If made too
small, tasks are too similar to meaningfully generalize. If made
too large, meta-learning becomes incredibly difficult. We argue
that both problems can be alleviated by introducing a teacher
model whose objective it is to control this meta-task distribution.
This teacher model is incentivized to start the student meta-
model on simple tasks then adaptively increase task difficulty
in response to the student’s progress. In turn, we can use
knowledge from easier tasks to learn harder tasks, allowing us to
learn generalizable policies faster. While this approach has been
generally studied in curriculum learning, our key contribution is
to automate the teacher model and update task-space parameters
in response to student performance.

I. INTRODUCTION

Humans are incredibly good at generalizing to unseen tasks.
But, humans are only able to do so because they lean on a
vast history of experience. Within a single lifespan, we begin
by learning simple tasks: crawling, walking, talking. As we
age, we learn progressively more and more difficult tasks,
borrowing from the simpler to inform the more complex.

In order for machines to exhibit this same behavior, they
have to learn how to generalize and borrow from previous
experiences. Once they can do so reliably, we move a step
closer to the holy grail of Artificial General Intelligence.
However, artificial intelligence systems are incredibly brittle.
Because we have an incomplete understanding of how to best
learn from past experiences, it is unclear how we can create
robust, generalizable Al agents.

We propose to tackle this problem by combining curriculum
learning and meta learning to teach meta-Al agents to start
from easy tasks, progressively learn harder tasks, and use
information about easy tasks to inform the harder ones. In
order to do so, we introduce a teacher that updates the
difficulty of the current task in response to student progress.

Using this formulation on three classification tasks, we
show that our approach leads to better generalization. Before
doing so, we would like to discuss related works and provide
preliminary information for attacking this problem.

II. RELATED WORKS

Meta-learning, life-long, curriculum, few-shot, one-shot and
incremental learning are all concerned with one core chal-
lenge: when a model is given a problem it has never seen
before, how can it use its prior knowledge to solve that
problem?

Algorithm 1 Adaptive Meta-Teaching

Require: p(7): Task-parameter space
Require: /: Find approximate gradient procedure
Require: £: Loss function
Require: #: Student parameters
Require: w: Parent parameters
1: while not done do
24 Sample meta-batch of tasks from perturbed task-space
distribution 7; ~ p(T) + N
3: for all 7; do

4: Evaluate Vy 1, L7, with respect to K examples
5% Compute adapted parameters with gradient de-
scent: 041 < 0; — Vo1, L7, (6;).

6 end for

7 Teacher step - update task space parameters

8: Approximate difficulty gradient V., ~ U(L;,w;)

9 Compute adapted task-space parameters with gradient
descent: wit1 + w; — Vy.

: end while

—
(=]

Meta-learning, or learning to learn, first began with the
intent of learning the best way to pre-update models by
learning learning rules or update functions [20][3]. Many of
these earlier approaches used random search to perform this
pre-update, [1], and showed that pre-training a model on a
previous set of similar tasks improved performance on current
tasks. Recently, approaches like MAML [6], FOMAML [2],
and REPTILE [18] started using first or second order gradient
information to perform this meta-learning step. Generally,
we can broadly divide meta-learning approaches into three
categories: those that use random search or evolutionary
methods (Baldwinian/Lamarckian Evolution [5]), those that
use gradient information for gradient descent or optimization
(MAML [6]), and those that explicitly use past information
(RNNs [26])

Curriculum learning addresses a similar problem, but cen-
ters on reusing previous experience either sequentially or
in a manner that maximizes student progress[4]. The term
self-paced learning has been used recently to describe this,
[10][9][27][12], but the problem boils down to the same
concept: how can a student most effectively learn and guide
its learning? This is done with the hope that we can build
systems that are continuously learning and using past experi-
ence, a concept which itself has been exxtensively explored
[17]1[22][23][15][21][25][11]. Multiple approaches have also
been proposed to use curriculum learning for transferring
information between tasks [19][7].



The closest approach to our own is detailed in [16] and is
referred to as teacher-student curriculum learning. In this set
up, the teacher chooses to train the student on N discrete tasks.
Depending on how well the student learns a task (using the
learning curve), the teacher updates the probability with which
it samples that task at the next training iteration. This method
borrows from non-stationary multi-arm bandit literature and
incentivizes the teacher to choose tasks that the student has
previously achieved high reward progress on. Although this
method can be extended to continuous task-space problems, it
is unable to take advantage of progressive task knowledge and
does not address either of the core problems in meta-learning.

Another similar approach shown in [8] also uses diversity to
perform unsupervised meta-learning. However, this work again
does not attempt to perform curriculum learning nor does it
transfer from simpler policies to more difficult policies.

III. PRELIMINARIES

We follow from the setup given by Model Agnostic Meta
Learning. Here, we seek to learn an initial set of parameters 6*
for a neural network across a distribution of tasks p(7) such
that a task 7; sampled from the distribution can be solved in
a small number of gradient steps.

The meta-learner’s objective is defined as:

min Er; (1) £7:(6;) (1)

where we take an expectation over the task space, L7; refers
to the loss on the ith example of the current task, and 9; are
the parameters adapted to fit K examples of the current task.

Following the MAML setup, we obtain 6 by performing
gradient descent:

0, < 6 — aVyLr (0) ¥))

We can use w7 to refer to the parameters that define
the distribution of tasks p(7). These can either be continuous
or discrete. Furthermore, we assume to have access to 1(w),
which defines the difficulty of the distribution of tasks. 1) can
be changed by modulating our w, although the relationship
between w and v is assumed to be nonlinear.

IV. LEARNING TO META-TEACH
A. The Static Teacher

We begin by exploring a meta-learning version of a static
teacher model that has been previously used in curriculum
learning.

The static teacher operates as follows. Before training,
we define a static set of progressively more difficult task
distributions. These task distributions can either be manually
defined or drawn from another distribution. Then, during meta-
training time, whenever the student model’s meta validation
loss goes below a specific threshold, we switch to the next,
slightly harder set of tasks. We continue doing so until we
reach the the final, most difficult set of tasks.

Though this approach is simple to implement, it heavily
relies on knowledge of task-space parameters. In turn, it can

fail catastrophically. For example, if we switch to a harder
task distribution and it becomes too difficult for our model
to solve the task, it will never reach our threshold and will
never progress to the next set of tasks. Furthermore, in the
chance that our model records a meta validation loss below
the threshold on a set of tasks that do not encompass the full
difficulty of the current task distribution, it would move on to
more difficult tasks when, in reality, it was not able to fully
solve the easier tasks.

We can alleviate these problems by creating more inter-
pretable task space parameterizations and using higher-order
information about student progress, but this puts more burden
on task design and, ultimately, only adds to model brittleness.

B. The Adaptive Teacher

We now introduce our key contribution, the adaptive teacher.
The adaptive teacher’s goal is to decrease student loss while
increasing task complexity. Ideally, we would like our teacher
to observe several behaviors.

1) If the student is consistently over-performing on the
current set of tasks, the teacher should increase the task
difficulty.

2) If the student is consistently under-performing on the
current set of tasks, the teacher should decrease task
difficulty.

3) The teacher should update in the direction of Vi at w.
In other words, the teacher should capture how much
a change in each task distribution parameter affects the
difficulty of the task distribution.

4) The teacher should eventually push the student to ex-
plore more difficult tasks.

In order to meet these requirements, we introduce a teacher
model that updates task parameters by approximating how
much its previous parameter changes affected task difficulty.
To do so, we use information about student progress in order
to estimate the gradient of the task space difficulty with respect
to task space parameters.

In the next section, we will describe how we estimate this
gradient and how it can be used to change our task space
distribution.

1) Estimating V1): In practice, it is difficult to define our
difficulty 1), since it requires domain-specific knowledge about
how each task distribution parameter affects the difficulty of
the task distribution. In turn, we assume that the student’s
learning progress at the current time-step is equivalent to the
difficulty of the task distribution.

Once we have the student’s meta validation loss at each
timestep, we would like to use it to determine how much we
should update the teacher’s parameters in order to accomplish
requirement 3. Effectively, this requires us to estimate Vi),
or the gradient of our difficulty, with respect to the task
distribution parameters w. In order to approximate Vi), we
perturb the current parameters w with uniform noise. Then,
by subtracting the current meta-learning loss from the previous
meta-learning loss and dividing by change in parameter, we
can approximate the derivation of £ with respect to each task



Student Progress on MNIST
Task After 2k Meta-Steps

—— No Teacher
—— Adaptive Teacher 3.5

Validation Loss

Student Progress on Omniglot 5 Way
Task After 1k Meta-Steps

Student Progress on Omniglot 20 Way
Task After 1k Meta-Steps

—— No Teacher
—— Adaptive Teacher

—— No Teacher 6
—— Adaptive Teacher

Inner Update

Fig. 1. Performance of the adaptive teacher compared to standard MAML on 10 tasks sampled from the hardest task distribution across three experiments.
In all three preliminary experiments, we find that using an adaptive teacher improves MAML performance on unseen tasks.

distribution parameter. In order to refine this gradient, we can
use information over more than two timesteps. Furthermore,
in order to better capture our requirements, we only take
gradient steps that are larger than a certain threshold, which is
specified as a problem-specific hyperparameter. Once we have
this, we can perform gradient descent over the task distribution
parameters. In practice, because we assume this approximation
is noisy, we only pay attention to the sign of each partial
derivative and update each parameter in that direction by a
pre-specified amount. One advantage of this approach is that
the meta-teacher can use the same information as the meta-
optimizer in order to update the task distribution.

TABLE I
HYPERPARAMETERS
Hyperparameter Value
Inner Learning Rate 0.1
Meta Learning Rate 0.001
Inner Updates 5
Meta Updates 2000
Teacher Update Rate 4
Teacher Gradient Step 2
Inner batch size 1
Meta Batch Size 8

V. EXPERIMENTS, DATASETS, AND FEATURES

In order to ascertain the efficacy of the adaptive teacher
approach, we compare it to standard meta-learning on three
tasks, an MNIST classification task and two Omniglot classi-
fication tasks.

Ideally, we would like to show that after the same number of
meta-steps, if we roll out each model on a set of unseen tasks,
the teacher-aided model will be closer to optimal, meaning that
it will start with a lower loss before performing inner gradient

descent and end with a lower loss after performing the same
number of gradient steps.

In all three tasks, we use an open-source PyTorch imple-
mentation of MAML and Cross Entropy Loss. We also use
the same neural network structure specified in [6], consisting
of 3 64 by 64 convolution layers, each followed by a batch
normalization layer, a 2 by 2 max pooling layer and a ReLU
activation. All other hyperparameters used are listed in Table
I

VI. MNIST CLASSIFICATION TASK

MNIST is a classification dataset consisting of 28 by 28
pixel grayscale input images of hand-written numbers and
labels from 0-9 [14]. In order to adapt it to a meta-learning
setting, we randomly relabel the images so that each task might
be considered unique. For our teacher context, the task space
parameters w simply consist the number of classes from 1 to
10 used for the current task.

VII. OMNIGLOT CLASSIFICATION TASKS

Omniglot is a classification dataset consisting of 20 unique
handwritten samples of 1623 characters from 50 languages
[13] that is often used for few-shot learning experiments. We
use the same protocol as in [6] and [24] of N-Way K-shot
training, where N unseen classes are selected for each task
and K instances of each class are provided for training. We
then evaluate the model on new instances from within these N
classes. We consider two versions of this task, a 5 way 1 shot
version and a 20 way 1 shot version. In the 5 way experiment,
the task space parameters w consist of the number of classes
from 1 to 5 used for the current task, while in the 20 way
experiment, w consists of the number of classes from 1 to 20.

VIII. RESULTS

Results for all three tasks are summarized in Figure 1.
In the MNIST experiment, we find that after 2000 meta-
steps, the teacher-assisted model begins with a lower loss



across 10 unseen tasks. But, because this is a relatively
simple experiment, both the teacher-trained version and normal
MAML converge to a similar validation loss after 4 gradient
steps. Similarly, in the two Omniglot experiments, after 1000
meta-steps the teacher-assisted model starts and ends with a
lower loss than the standard model, indicating that teacher
assisted training might have led models to better generalize to
unseen tasks in the hardest task distribution. However, because
we had little time to fine-tune the hyperparameters for the
adaptive teacher, it is unclear what degree of benefit teacher
training provides.

IX. DISCUSSION AND FUTURE WORK

Our initial results on these three classification tasks provide
encouraging validation of our adaptive approach to teaching
meta-learning models. Because our chosen method, MAML, is
already notoriously difficult to train [2],it might be even harder
to add an additional layer of training on top of it. Furthermore,
because we only used discrete task space parameters, we were
unable to explore what effect this method could have on
continuous task space problems, where this method might have
been more useful. Nevertheless, we believe that our method,
an unsupervised manner of updating task difficulty in response
to student progress, can be beneficial in long-term settings,
where we might want our models to explore more diverse
and disconnected task spaces. This type of approach might
be useful for unifying meta-learning, curriculum learning, and
lifelong learning, and make it more accessible to use past
knowledge to guide future tasks.

We are excited to see improvements to the difficulty gradient
approximation and to manners for tuning both student and
teacher hyperparameters. We also hope to extend this approach
to meta learning in continuous task parameter space and
apply it to regression and reinforcement learning problems.
Ultimately, we believe that this kind of approach will be
instrumental in creating lifelong, never-ending agents, and are
motivated to see it working in lifelong settings.

To reproduce these results, code is
https://github.com/glebshevchukk/morph.

available at

REFERENCES

[1] Ajith Abraham. “Meta learning evolutionary artificial
neural networks”. In: Neurocomputing 56 (2004), pp. 1-
38.

[2] Antreas Antoniou, Harrison Edwards, and Amos
Storkey. “How to train your MAML”. In: arXiv preprint
arXiv:1810.09502 (2018).

[3] Samy Bengio et al. “On the optimization of a synaptic
learning rule”. In: Preprints Conf. Optimality in Arti-
ficial and Biological Neural Networks. Univ. of Texas.
1992, pp. 6-8.

[4] Yoshua Bengio et al. “Curriculum learning”. In: Pro-
ceedings of the 26th annual international conference
on machine learning. ACM. 2009, pp. 41-48.

(10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

(20]

Chrisantha Fernando et al. “Meta-learning by the bald-
win effect”. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion. ACM.
2018, pp. 1313-1320.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.
“Model-agnostic meta-learning for fast adaptation of
deep networks”. In: arXiv preprint arXiv:1703.03400
(2017).

Chen Gong et al. “Multi-modal curriculum learning for
semi-supervised image classification”. In: IEEE Trans-
actions on Image Processing 25.7 (2016), pp. 3249—
3260.

Abhishek Gupta et al. “Unsupervised Meta-Learning
for Reinforcement Learning”. In: arXiv preprint
arXiv:1806.04640 (2018).

Lu Jiang et al. “Self-paced curriculum learning”. In:
Twenty-Ninth AAAI Conference on Artificial Intelli-
gence. 2015.

Lu Jiang et al. “Self-paced learning with diversity”. In:
Advances in Neural Information Processing Systems.
2014, pp. 2078-2086.

Faisal Khan, Bilge Mutlu, and Jerry Zhu. “How do
humans teach: On curriculum learning and teaching
dimension”. In: Advances in Neural Information Pro-
cessing Systems. 2011, pp. 1449-1457.

M Pawan Kumar, Benjamin Packer, and Daphne Koller.
“Self-paced learning for latent variable models”. In:
Advances in Neural Information Processing Systems.
2010, pp. 1189-1197.

Brenden Lake et al. “One shot learning of simple visual
concepts”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society. Vol. 33. 33. 2011.

Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST
handwritten digit database”. In: AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist 2 (2010),
p. 18.

David Lopez-Paz et al. “Gradient episodic memory for
continual learning”. In: Advances in Neural Information
Processing Systems. 2017, pp. 6467-6476.

Tambet Matiisen et al. “Teacher-student curriculum
learning”. In: arXiv preprint arXiv:1707.00183 (2017).
Tom Mitchell et al. “Never-ending learning”. In: Com-
munications of the ACM 61.5 (2018), pp. 103-115.
Alex Nichol and John Schulman. “Reptile: a scal-
able metalearning algorithm”. In: arXiv preprint
arXiv:1803.02999 2 (2018).

Anastasia Pentina, Viktoriia Sharmanska, and Christoph
H Lampert. “Curriculum learning of multiple tasks”.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 5492-5500.
Jiirgen Schmidhuber. “Evolutionary principles in self-
referential learning, or on learning how to learn: the
meta-meta-... hook”. PhD thesis. Technische Universitit
Miinchen, 1987.



(21]

[22]
(23]

[24]

[25]

[26]

[27]

Sainbayar Sukhbaatar et al. “Intrinsic motivation and
automatic curricula via asymmetric self-play”. In: arXiv
preprint arXiv:1703.05407 (2017).

Sebastian Thrun. “Lifelong learning algorithms”. In:
Learning to learn. Springer, 1998, pp. 181-209.
Sebastian Thrun and Lorien Pratt. Learning to learn.
Springer Science & Business Media, 2012.

Oriol Vinyals et al. “Matching networks for one shot
learning”. In: Advances in neural information process-
ing systems. 2016, pp. 3630-3638.

Tianjun Xiao et al. “Error-driven incremental learning
in deep convolutional neural network for large-scale
image classification”. In: Proceedings of the 22nd ACM
international conference on Multimedia. ACM. 2014,
pp. 177-186.

Wojciech Zaremba and Ilya Sutskever. “Learning to
execute”. In: arXiv preprint arXiv:1410.4615 (2014).
Qian Zhao et al. “Self-paced learning for matrix factor-
ization”. In: Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence. 2015.



