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1 Motivation

It is commonly thought that the stock market is unpredictable due to the abundance of constantly changing variables
that impact a company’s stock performance; however, with the use of a deep learning framework, it may be possible
to predict trends within the stock market with a higher accuracy than a random 50-50 guess. Using time series data,
as well as a deep learning algorithm consisting of wavelet transforms (WT), stacked auto-encoders (SAE), and
recurrent neural network layers (RNNs), our goal is to predict stock market performance at a level that’s above the
average human performance.

Another factor that inspired our team to research the question of stock market prediction is the growing prevalence
of automation within the world of financial technology. The term high frequency trading (HFT) has been appearing
within the lexicon of many individuals. The popularity of this notion is growing rapidly since its inception. In 2012,
HFT accounted for more than 60 percent of the world’s foreign exchange futures trading volume, and in 2016 HFT
accounted for more than 80 percent of the volume. In fact, many modern economists believe that the next financial
crisis will be directly related to liquidity issues in the HFT market. We hope to utilize our knowledge from CS230
in order to join the HFT surge ourselves. Our paper falls into the category of quantitative investment papers, as we
use time series stock market prediction data to determine future stock returns.

In this work, we describe the development of two stock return prediction models. Our initial modeal uses 1) denoising
wavelet transforms and 2) fully-connected neural network layers. Our final model includes 1) denoising wavelet
transfrom, 2) stacked auto-encoders (SAE), and 3) layered recurrent neural networks (RNNs). We use both model
architectures to compare performance and pinpoint the performance gain of RNNs due to the time-series nature of the
data. In Section 2, we describe the dataset used for our deep learning model. In section 3, we detail the methodology
used, including discrete wavelet transforms, network architecture, and cost function. In Section 4, we report and
analyze results from the experiments we have run. We conclude with future work in Section 5 and contributions in
Section 6. The code for our project can be found on GitHub: https://github.com/msagar7/golddust

2 Dataset

For our project, we used a data set provided to us by the Winton Stock Market competition from Kaggle. The data
set consisted of 40,000 different stocks each of which has 25 features, 180 returns, as well as the returns from the
close of the trading day on D-2, D-1, D+1, D+2. The detailed description of what each of the provided variables do
is shown below:

Feature 1 to Feature 25: different features relevant to prediction

Ret MinusTwo: this is the return from the close of trading on day D-2 to the close of trading on day D-1
(i.e. 1 day)

Ret MinusOne: this is the return from the close of trading on day D-1 to the point at which the intraday
returns start on day D (approximately 1/2 day)

Ret 2 to Ret 120: these are returns over approximately one minute on day D. Ret 2 is the return between

t=1 and t=2.



Ret 121 to Ret 180: intraday returns over approximately one minute on day D. These are the target
variables you need to predict as id 1-60.

Ret PlusOne: this is the return from the time Ret 180 is measured on day D to the close of trading on
day D+1. (approximately 1 day). This is a target variable you need to predict as id 61.

Ret PlusTwo: this is the return from the close of trading on day D+1 to the close of trading on day D+2
(i.e. 1 day) This is a target variable you need to predict as id 62.

However, once the team downloaded the Winton Stock Market competition data set, we discovered that there
are many missing elements from the data. To address this issue, we developed a python script that attempts to
approximate these data gaps. For all non-time series features, we found the arithmetic mean of all the nonempty
values in the columns, and we replaced the empty values with the associated mean. For missing time-series return
data, we replace missing returns with the calculated mean of available returns for each example in the data. Later,
we may use other approaches in filling missing values for rows. Perhaps we could average out the surrounding time
values. If, for instance, we didn’t have a value for Ret 3 and Ret 4, we could average out the two values of Ret 2
and Ret 5 to receive a better approximate. Another idea is to implement a forced inverted dropout procedure where
features with missing values are forcibly dropped out during training. Either way, we feed this full dataset with no
missing values to our deep learning model.

3 Methodology

3.1 Denoising

Once we acquire our data-set we first apply a Discrete Wavelet Transform (DWT) to separate noise from our original
time-series data. Similar to a Fourier transform, the wavelet transform decomposes a function into the frequencies
that make it up, except now the transform is based on small wavelets with limited duration. We apply the Haar
function as the wavelet basis function to reduce processing time significantly and to decompose the financial time
series into its time and frequency domains. For our final project we will apply the wavelet transform multiple times
to reduce over-fitting, but for this milestone we only apply it once. For later milestones, we intend to apply the WT
around four times, to ensure that most of the noise in our data is eliminated. The function for the wavelet transform
is shown below, where a and 7 are the scale factor and translation factor, respectively. ®(¢) is the basis wavelet:
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We created the DWT by inputting 119 samples, consisting of our time series data, portrayed in our data set as values
from 2 to 120. During the manipulation, we apply the DWT, and this manipulation outputs two arrays. The first
array consists of low frequency coefficients. The second array consists of high frequency coefficients. These two
arrays are generated using the PyWavelets package in python. We concatenate the two arrays such that the wavelet
output mirrors the original data input. Each of the arrays are of size 60, so when concatenated our array contains 120
samples, which is 1 extra sample from our inputted 119. The graph below portrays the impacts of a WT on a signal
using multiple levels of transformation. In the figure below, you can see how the DWT works on a chirp signal:
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3.2 Fully Connected Network Model

After applying the DWT, we passed our time-series denoised data, as well as 27 non-wavelet-transform data points
from our original data set into a fully connected network consisting of 4 layers. We then take our 147 input features
and apply the Relu function in our fully connected network to get 40 hidden units. After the tanh function is applied
to generate 30 hidden units, and after we reapply the Relu function to go back to 40 hidden units again. Finally we
run the units through a tanh function to get our 62 output predictions. The figure below outlines our architecture.
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3.3 Recurrent Neural Network Model

After analyzing results from the fully connected network model, we modified our architecture to better fit time-series
data. The DWT, which seemed to work well at denoising and picking out frequencies, was kept for the final model.
We replaced the fully connected section with a stacked autoencoder (SAE). SAEs are a form of unsupervised learning
where the model learns an encoding and decoding function. After the model is trained, then the input is passed in to
only the encoder, and the output is given to the next stage. Our final stage was a Recurrent Neural Network (RNN)
with three layers and dropout regularization in each layer. As explained in the next section, hyperparameter tuning
demonstrated that a dropout probability of 10% produced the least amount of variance and training our model on 25
epochs gave us the highest accuracy. The figure below outlines our RNN model architecture.
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4 Results

4.1 Fully Connected Network Model

With 40000 training examples, we trained and tested our fully connected network model using 10-fold cross
validation. In two separate instances of training, we trained our model using both a cross entropy loss function and a
square difference loss function. Recall from the network architecture that the output of the model g is a 62-entry
column vector. To evaluate the model, we first perform an element-wise comparison between ¢ and target y to see
whether the model correctly predicted a rise (positive value) or fall (negative value) in the stock return value. We
determine the model accuracy by computing the fraction of predictions which it correctly predicted either rise or
fall.

| Dratar Inpaul 1 I |3 4 5 i T E | % 1 Average

suuare Dilference STT3T | S6.BER | 49907 | S0.005 | 50450 | 39250 [ 47365 | 31398 | 41.002 | 47537 | 45950
| Cross Entropey Loss | 47373 | 49490 | 499046 | 53.623 | 55485 | 53186 | 53585 | 54.189 | 48338 | 51.735 | 51620

As you can see from the chart above, our current implementation receives around 50% accuracy when trained on
both cross entropy loss and square difference loss. It is apparent that the algorithms performance is equivalent to
essentially guessing whether the stock return will increase or decrease. Potential reasons for this 50% accuracy may
be because the discrete wavelet transformations were unable to successfully denoise the time-series stock return
values, or that some of our features were particularly unhelpful for prediction. More importantly, the low accuracy
verifies the fact that the fully connected network model is unable to extract time-based patterns from the data.
Hence, we also examine the performance of the recurrent neural network model, better suited for time-series data.

4.2 Recurrent Neural Network Model

Prior to evaluating the performance of the model, we tuned hyperparameters. The two hyperparameters of particular
importance were the number of epochs used to train the model, and the dropout probability. For the number of
epochs, we tested values 1, 5, 10, 25, 30, 50, 100. For all tests, we decided to fix the dropout probability at 0.1 The
performance for the different epoch values is shown below:

Total Epochs (dropout = 0.1) | Training Set | Test Set

1 51.9913% 51.8105%
5 51.4072% 51.4071%
10 57.1145% 57.1596%
25 65.4812% 65.4697%
30 64.0671% 64.1763%
50 64.1439% 64.0503%
100 60.8273% 60.7885%

Notice that at 1 and 5 epochs the model performs with roughly 51% accuracy on the test set. At 10 epochs, the
model performs at 57.16% accuracy on the test set. These performances are similar to that of the fully connected
network model. When looking at the decreasing loss values for all epochs, it is evident that the model has not
converged to the optimal parameter values. At 25 epochs, the model performs best with an accuracy of 65.47%.
When looking at the loss values, it is apparent that the parameters have converged to their optimal values. At 30 and
50 epochs, the model performs with slightly lower accuracy around 64%. Finally, at 100 epochs, the model
performs with 60%. Regardless of number of epochs, it is important to note that performance of training and testing
sets are similar. Hence, when evaluating optimal epochs, we are more concerned with optimal parameter values
than variance. Based on these results, we decide to train the recurrent neural network model using 25 epochs.

After determining the number of epochs during model training, we tune the dropout probability parameter.
Specifically, we tested the following probabilities: 0.08, 0.1, 0.15, 0.2, 0.25. Based on the results from epoch
hyperparameter tuning, we fix the number of epochs used during training to 25. The performance for the different
dropout probabilities is shown below:

Dropout | Train Set | Test Set

0.08 63.6774% | 63.6786%
0.1 65.6912% | 65.2534%
0.15 64.3821% | 64.3584%
0.2 64.8197% | 64.8297%
0.25 63.8641% | 63.8105%




At dropout probability 0.08, the model performed with 63.68% accuracy. At dropout probability 0.1, the model had
optimal performance with accuracy 65.25%. At dropout probabilities 0.15 and 0.2, the model performed with an
accuracy around 64%. Finally, at dropout probability 0.25, the model performed with 63.8% accuracy. The results
are highly informative. With dropout probability 0.08, the lower accuracy may indicate not enough regularization.
With dropout probability 0.25, the lower accuracy may indicate that inter-feature dependencies are not optimally
learned due to a higher dropout probability. Hence, based on these tuning results, we choose a dropout probability
of 0.1.

Having completed hyperparameter tuning, we now evaluate the performance of the recurrent neural network model.
As we did with the fully connected network model, we train and test the model using 10-fold cross validation.

1 2 3 4 5 6 7 8 9 10 Average
Train | 64.8 | 65.09 | 64.87 | 6541 | 65.22 | 64.96 | 65.24 | 65.13 | 654 | 63.75 | 64.99
Test | 64.79 | 65.15 | 6491 | 6545 | 65.06 | 64.96 | 65.18 | 65.02 | 65.54 | 63.63 | 64.97

After performing 10-fold cross validation, we see that the recurrent neural network model successfully predicts
stock price movement with 64.97% accuracy. This is comparable to the performance of models from many other
similar works [2]. Of particular importance is the comparison of performance between the fully connected network
model and the recurrent neural network model. The fully connected network model performed with 51.68%
accuracy, while the recurrent neural network model performed with 64.97% accuracy. Clearly, the RNN-based
model significantly outperforms the fully connected network model. These results are expected, however, since
RNNSs are superior at learning time-series data like our successive stock prices.

An interesting issue we first encountered while going through the process of hyperparameter tuning is that our
training accuracy and test set accuracy are marginally different. This is quite odd, as normally the test accuracy is
lower than training accuracy due to variance. A potential explanation of this occurrence is that perhaps the training
and test sets came from similar distributions, resulting in similar performance. This is a possible explanation, as our
data set was provided by the Winton Group investment management company. For future work, it would be
beneficial to create a data scraping script that would collect the same features we analyzed, but for an eclectic group
of companies that were not in our training set. Such efforts may help to add more heterogeneity to the testing sets
and ensure that this odd observation does not occur.

5 Future Work

In this paper, we have explored stock price predictions using both a fully-connected network model and a layered
recurrent neural network model. The immediate next step is to explore and implement a model based on layered
Long Short-Term Memory (LSTM) networks. When comparing the fully-connected model to the RNN model, we
notice that the RNN model significantly outperforms the fully-connected model when predicting stock prices. This
is reasonable considering the effectiveness of RNNs on sequential data. However, it is clear that older stock prices
could potentially impact current stock prices. For example, a company that had a public relations scandal a month
ago could still be experiencing depreciation in stock value in the status quo. Due to such long-term dependencies,
the use of LSTMs could significantly improve model performance.

6 Contributions

While everyone contributed to every part of the project, the work was broken down into manageable parts led by
groups of two. Sagar and Maxim handled the data preprocessing so that the dataset is compatible with deep learning
models. Joaquin and Cheyenne handled researching and implementing the Discrete Wavelet Transform. Maxim and
Sagar took on researching and implementing the stacked autoencoders. In the next stage, Joaquin and Sagar coded
the wavelets, stacked autoencoders, and layered Recurrent Neural Networks while Maxim and Cheyenne managed
the data collection and analysis. The hyper-parameter tuning was also completed by Maxim and Cheyenne. Lastly,
everyone helped together to design the poster and draft the paper.
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