Neural Machine Translation using Sequence Level
Training

Kyu-Young Kim
Department of Computer Science
Stanford University
kykim153@stanford.edu

Abstract

Deep learning has recently been successfully applied to a wide range of natural
language processing (NLP) tasks to advance the state of the art. Recurrent neural
networks (RNN), in particular, are now widely used for such tasks as text sum-
marization and machine translation. In a typical training scheme, these models
are provided at each time step with the ground truth history with some context to
predict the next token in a sequence. At inference time, however, the model is con-
ditioned on its own predictions to generate the entire sequence. This discrepancy
between the conditioning distributions makes generation at inference time unstable
and potentially lead to significant accumulation of errors when generating long
sequences. In this work, we explore several approaches that have recently been
proposed to address this issue, and, in particular, a sequence level training method
using an idea from reinforcement learning (RL) in depth.

1 Introduction

Recurrent neural networks are designed to process sequential data and, hence, have recently been
widely adopted for many NLP applications. For instance, RNNs (or variants thereof such as LSTM)
have been applied to tasks such as machine translation, image captioning, and abstractive summariza-
tion to achieve impressive results [3].

Recurrent models are trained to maximize the likelihood of generating the sequence of target tokens
given some context. This is generally done by maximizing in each time step the likelihood of each
target token given the model’s previous state and the previous target token. At test time, however,
the model generates one token at a time conditioned on its own state and the previous predicted
token. This training scheme of using per-token, cross-entropy loss is often referred to as maximum
likelihood estimation (MLE) or teacher-forcing. MLE training poses two issues that limit the quality
of the output generated by these sequence models: exposure bias and loss mismatch [9].

Exposure bias refers to the discrepancy between the distribution the model is conditioned on during
training and that during inference. The process of generating a sequence one token at a time based
on its own predictions is unstable since the model can end up in a state that it has not encountered
during training. Once in such a state, the model can generate a garbled output, which is then fed back
to the model for the subsequent steps, quickly leading to a low-quality output. It is even possible for
the model to repeatedly generate a series of tokens without ever stopping.

Loss mismatch refers to the problem where the loss function used to train the model is different than
the metric used to evaluate the model. The loss function used at training time is often at the word level
in order to have the model maximize the likelihood of the next correct word. For evaluation, however,
sequence level, discrete metrics such as BLEU [8] or ROUGE [6] are typically used. These metrics
are supposed to capture the notion of the quality of the model generated sequence in comparison to

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

German Sentences

Wir werden alle geboren. Wir bringen Kinder zur Welt.
Das ist ein Bild der Cannery Row von 1932 .

English Sentences

We’re all born. We all bring our children into the world.
This is a shot of Cannery Row in 1932 .

Table 1: Sample sentences from the train set.

the human generated sequence. Such evaluation metrics are difficult to directly optimize for, because
they are often not differentiable.

These issues with MLE training have recently been explored by the research community using ideas
from reinforcement learning. We study in depth one such approach that uses an alternative sequence
level training method based on what is referred to as the REINFORCE algorithm [11].

2 Related Work

Various techniques have been proposed to address the problem with accumulation of errors when
generating long sequences using typical recurrent models. Beam search is one such technique that
potentially finds a higher quality sequence by maintaining a set of best candidates during the decoding
stage and choosing the highest scoring candidate at the end of generation. This approach often
produces a better sequence than the one from greedy decoding that greedily selects the token with the
highest score in each time step. The main downside of using beam search is that it is computationally
heavy. It can often be significantly slower than greedy decoding depending on the size of the beam
(the number of candidates). Hence, for applications where latency is critical, beam search poses a
different challenge unless an accelerated hardware is used.

3 Dataset

The sequence models explored in this work are applicable to a variety of NLP tasks, but we in
particular considered machine translation. The data for the MT task is from the German-to-English
text translation track of the IWSLT 2014 evaluation campaign, which contains lecture transcription
and translation of TED and TEDx talks [4]. The training set contains over 150,000 German and
English sentences. We pre-processed the training data using the Moses tokenizer [5] and lower-cased
all sentences as done in [9]. To create input and output vocabulary sets, we collected all distinct
words in the training data except for the words that occurred less than three times. This was for better
generalization performance and computational efficiency. The dev and test sets were also prepared
the same way as described in [9]. Specifically, dev2010 and dev2012 were combined to form the
validation set and tst2010, tst2011, and tst2012 were combined to form the test set.

4 Models and Methods

For the training schemes studies in this work, we focus on RNN-based models which are a popular
choice for text generation tasks.

4.1 Sequence-to-Sequence Model

A sequence-to-sequence model is an RNN-based sequence learning model that uses one RNN cell
called encoder to map the input sequence to a vector of a fixed size and another RNN cell called
decoder to map this vector into the target sequence [10]. More formally, given the input sequence
(21, ...,x7), a vanilla seq2seq model first generates the fixed-sized vector representation v which
is the last hidden state of the encoder. Using this representation vector v as its initial hidden state,
the decoder produces one token at a time to generate the sequence (yj, ..., ¥4). Each token y; is

generated by projecting the hidden state of the decoder at time ¢ to a vector of size equal to the size
of the output vocabulary and selecting the one with the highest probability after feeding it through a
softmax layer:

pe = Wohy (D
l; = softmax(p;) 2
y;, = argmax(l;) 3)

The loss is calculated by summing the cross-entropy loss over each token in the generated sequence
and normalizing the sum by the batch size:

T s
1
loss = - Z Z Yt(c) IOg(lt(c)))

t=1¢=1

where s is the size of the output vocabulary and m is the batch size.

4.2 Reinforcement Learning

Viewing a sequence-to-sequence task as an instance of RL problem, we can apply various RL
techniques to sequence model training. One way to frame text generation task as an RL problem is
by considering the RNN decoder as an agent and its hidden state as the environment it interacts with.
The probability distribution over the output vocabulary as computed by the softmax layer can then be
viewed as the set of actions the agent can take. Based on the chosen action, the agent receives reward
computed using an evaluation metric such as BLEU.

To formalize, given a set of input and target sequences { X!, ..., X™} and {Y'}, ..., Y™}, the loss
function is

lOSS = — Z }Eﬂ(Y/’L‘X’L) [R(Y/1|YZ)] (5)

i=1

where R(Y"*|Y") is the reward the agent receives for generating the sequence Y’ when the target
sequence is Y*. The gradient of the loss is then given by

Vioss = — Y By xo) [R(Y|Y)VIog (Y| X")] (6)

i=1
and this is a policy gradient method referred to as the REINFORCE algorithm [11].

Conceptually, the above formulation allows us to deal with both the exposure bias and loss mismatch
problems by sampling sequences directly from the model and using a reward function R that can be
an evaluation metric of our choice.

However, direct application of the algorithm starting with a random policy is likely to be problematic.
This is because in text generation the size of the possible tokens (actions) the model can produce is
often large. Hence, the MIXER algorithm described in [9] proposes a type of curriculum training
where the model is initially trained using MLE with ground truth sequences and in later epochs trained
using REINFORCE with its own predictions. This approach has a resemblance to the scheduled
sampling idea in [3] except that it gradually have the model produce the whole sequence rather than
sampling from the model at the token level.

S Experiments and Analysis

All of the experiments were conducted using the TensorFlow library [1]. The code is available on
GitHub at https://github.com/kky1638/seq2seq.

5.1 Vanilla Seq2seq Model

We ran an initial set of experiments on vanilla seq2seq model with a basic encoder and decoder
structure. The models were trained with batch size of 16, learning rate of 0.001, and for 1 million

loss loss

45

0 200k 400k 600k 800k ™ 0 200k 400k 600k 800k ™

(a) 128 hidden units (b) 512 hidden units

Figure 1: Vanilla seq2seq model

steps in order to observe how the overall training progresses. We used Adam optimizer and applied
gradient clipping at 10.0 to avoid potential NaNs in gradient. Basic LSTM cell implementation was
used for both encoder and decoder.

The figure above shows training (orange) and evaluation (blue) graphs for two particular models —
one with 128 hidden units and another with 512 hidden units. Comparing the two training graphs, it
is evident that the model needs relatively large capacity in order to fit the training set well. However,
simply increasing the number of hidden units leads to overfitting and results in higher loss on the
evaluation set. Hence, we need to increase the model capacity with an appropriate regularization.

5.2 Attention Model

In a vanilla seq2seq model, the encoder maps the input sequence into a fixed-sized vector represen-
tation that is provided as an initial state to the decoder. However, this is often too limiting as the
encoder has to compress all the necessary information in its state across many time steps. To address
this issue, we allow the decoder to attend to the encoder states as it generates the output, effectively
increasing the memory capacity of the model [7].

Besides adding an attention layer, we experimented with dropout as a regularization technique. In the
context of an RNN-based model, dropout can be applied to the input, output, and state layer. In our
experiment, we applied dropout with keep probability of 0.8 only to the input and output layers and
not to the state layer. We made this choice because the cell state conceptually represents its memory
and hence applying dropout to the memory made less sense than applying it to the input and output
layers.

Lastly, in palce of the basic LSTM cell, we used layer-normalized LSTM cell [2] for both the encoder
and decoder that led to better convergence.

The figure below shows that the attention model suffers less from overfitting and achieves lower
training error than the vanilla seq2seq model even when trained for only 1/10 of the steps. Note,
however, that the speed as measured by the number of training steps per second also decreased by
about 1/4. We suspect that this is due to using the more complex LSTM implementation.

loss

©

Figure 2: Attention model with dropout

5.3 RL Model

We closely followed the MIXER idea explored in [9] to train our RL model. Specifically, we
implemented a curriculum learning schedule where we initially train the model in the regular MLE
fashion and gradually transition to using the model’s own predictions to compute the loss based an
evaluation metric (negation thereof). This learning schedule is controlled by two parameters — the
training step at which to start the transition and the training step at which to exclusively use the RL
loss. Based on these two parameters, we decide when to have the decoder use its own predictions in
place of the ground truth sequence. As training progresses, we apply a linear annealing to gradually
expose the model to its own distribution. The loss is then a weighted sum of the cross-entropy loss
and the RL loss.

For the RL metric, we used the BLEU score which estimates the quality of a generated sentence as
compared to a set of reference sentences using n-gram overlap:

4
1
BLEU = BP- exp(Z > logpn) (7
n=1

In the equation, p,, is the n-gram precision and BP is the brevity penalty that penalizes a candidate
sequence that is too short compared to the reference sentences [8]. It is a popular metric especially
for machine translation task.

We experimented with the same attention model as before but additionally applied the RL-based
curriculum learning. In particular, we set the anneal start step at 10,000 and the stop step at 200,000
on top of the layer-normalized LSTM encoder and decoder with input and output dropout. The main
challenge was with figuring out an appropriate annealing schedule which seems to have a large impact
on model convergence. Also, we learned that it is important to properly normalize the RL metric
since otherwise its scale may be significantly different than that of the cross-entropy loss with which
is combined to yield the final loss. Unfortunately, the RL-based model did not perform any better
than the the attention model that used a more sophisticated LSTM cell with dropout.

6 Conclusion

RNN-based models are widely adopted for a variety of NLP tasks. Typically, the model is trained
using the ground truth sequences but is conditioned on its own predictions to generate output at
inference time. This discrepancy can lead to poor quality output especially when generating long
sequences. Various approaches such as beam search and decoder attention are widely used to address
this issue. Viewing sequence learning as an RL problem, we can also apply RL techniques such as
the REINFORCE algorithm to deal with the problem. This has the conceptual benefit of addressing
both the exposure bias and loss mismatch problems.

We explored both MLE and RL-based training schemes on various seq2seq model architectures,
and, on the particular dataset used, more sophisticated model architecture with MLE training was
sufficient to achieve good results. We hypothesize that this is due to that (a) sub-optimal curriculum
learning schedule was used and (b) the dataset contained sequences that are too short to uncover the
issue of learning long range dependencies.

For future work, we would like to run more experiments with various curriculum learning schedules
to gain more insight into how they relate to model convergence. It would also be interesting to explore
when the RL-based approach begins to shine with respect to the length of the sequences the model
needs to learn.

7 Contributions

I was the sole member of the team and worked on all parts of the project including literature review,
implementation, and writing the report.

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,

Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

[3] S.Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems (NIPS), 2015.

[4] M. Cettolo, J. Niehues, S. Stiiker, L. Bentivogli, and M. Federico. Report on the 11th iwslt
evaluation campaign, iwslt 2014. In Proceedings of IWSLT, 2014.

[5] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open source
toolkit for statistical machine translation. In Proceedings of ACL Demo and Poster Sessions,
2007.

[6] C.-Y.Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, 2004.

[71 M.-T. Luong, H. Pham, and C. Manning. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2015.

[8] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Association for Computational Linguistics
(ACL), 2002.

[9] M. Ranzato, S. Chopara, C. Auli, and W. Zarembra. Sequence Level Training with Recurrent
Neural Networks. In International Conference on Learning Representations (ICLR), 2016.

[10] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In
Proceedings of the 27th International Conference on Neural Information Processing Systems
(NIPS), 2014.

[11] R. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning. Machine Learning, 1992.

