HATRNet: Human Activity/Transition Recognition using Deep
Neural Networks

Nicholas Gaudio, Akash Levy, and Jonas Messner
Department of Electrical Engineering, Stanford University
{nsgaudio,akashl,messnerj}@stanford.edu

Abstract

Human activity recognition based on sensor data is a topic with great potential for customized
healthcare. Here, an end-to-end deep learning architecture for human activity/transition recognition
is developed, achieving an error rate of 0.82 %. Various deep learning models are analyzed, and a
hyperparameter search is conducted to optimize our chosen model. First, an LSTM architecture is
examined, which has the advantage of allowing variable-length input sequences for both training
and inference. However, our best architecture (HATRNet) is a deep convolutional neural network
with late sensor fusion i.e. separate processing pipelines for subsets of the input channels. We feed
in zero-padded time sequences to our network, and achieve accuracy exceeding the state-of-the-art
reported in literature—all without the use of hand-extracted features.

1 Introduction and Related Work

In developed countries today, most people own a smartphone with all the necessary sensor elements to perform human
activity recognition (HAR). This motivates the development of techniques to monitor human activity and encourage
healthy lifestyle choices. We propose an end-to-end deep learning solution for categorizing accelerometer and gyroscope
data into different activities/postural transitions. Our solution takes input sequences of gyroscope sensor data from a
smartphone (6 channels: x,y,z components of accelerometer, and x,y,z components of gyroscope) and produces activity
classifications, which are structured data suitable for health tracking and other purposes.

Implementations of human activity recognition have been demonstrated in prior studies. In [1], a support-vector
machine (SVM) is used to classify activities and postural transitions. The approach taken does not employ an end-to-end
strategy, and includes several signal processing and feature extraction steps. Frequency components of the data are
obtained by performing a fast Fourier transform on the time-series data. The time and frequency data are then fed
into a feature extractor which results in 561 features. These features are passed to the SVM model which predicts the
activity with a feature-dependent error rate of 3.22 % on the SBHAR (smartphone-based human activity recognition)
dataset. The weakness of the approach taken is the long development time required for hand-selection of features. In
[2], activities are classified by means of a convolutional neural network (CNN) by an architecture titled PerceptionNet.
The PerceptionNet architecture automatically extracts the temporal dependencies of the time-series data and leverages
the idea of late sensor fusion employing 1D convolutional and max pool layers in the early hidden layers followed
by a 2D convolutional layer and global average pooling layer, where the fusion of sensor channel processing occurs.
PerpectionNet decreases the error rate to 2.75 % on the SBHAR test data compared to a CNN with early sensor fusion
and LSTM model. In [3], another motion recognition algorithm based on feature extraction and SVMs is shown. [4]
uses an approach based on the K-nearest neighbor method. [5] uses information fusion from multiple density maps for
effectively assessing intensity patterns in health tracking.

The goal of this work is to implement an end-to-end deep learning architecture (HATRNet) without manual feature
extraction. Our final solution is similar to PerceptionNet [2], however we improve upon this existing work with: (1)
more advanced preprocessing including data augmentation, (2) frequency data from fast Fourier transform over the
inputs, (3) high-accuracy classification of transitions ([1] lumps all transitions into a single category, and [2] does not

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

consider activity transitions at all), and (4) more thorough architectural optimization and hyperparameter search. Our
code is made publicly available online under the MIT license'. As in PerceptionNet, we incorporate the highly effective
idea of late sensor fusion. While the reported error rates in previous works are already low, we distinguish the activities
“sitting” and “standing” more accurately, achieving an error rate of 0.82 %.

The results of [1] and [2] show the challenge of differentiating between the categories “sitting” and “standing” (see
table 1 for details). This misclassification can be a problem, especially when using activity recognition in health or
nutrition applications. As pointed out in [6], around 114 kcal per day are additionally expended if performing work at a
standing desk instead of the usual sitting desks in offices and schools.

2 Dataset and Features

The SBHAR dataset is introduced in [7] and extended to include postural transitions in [1]. We use the SBHAR dataset
with postural transitions from [1]. It contains 3-axial linear acceleration a and 3-axial angular velocity w, recorded at a
rate of 50 Hz. The dataset is labelled with six activities (walking, walking upstairs, walking downstairs, sitting, standing,
laying) and six postural transitions (stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand). There
are 1214 time-traces captured from a group of 30 volunteers aged 19-48 using the Samsung Galaxy SII smartphone.
The dataset was captured at a rate of 50 Hz with the longest time-trace being of length 2032 data points and the shortest
of length 73 data points.

In contrast to [1], HATRNet involves no feature extraction beyond incorporation of frequency representations of the
signals. As a result, our network determines relevant features automatically, even from a relatively small input dataset
size of 728 training examples.

For preprocessing, we first normalized the data by subtracting the mean and dividing by the standard deviation for each
input sequence. Next, we split our dataset into training, validation and test set with a 60 %/20 %/20 % split, resulting in
728/243/243 data traces in each set. We augment our training data by squeezing/stretching each training time trace
with four different random squeeze/stretch factors between 0.75 to 1.25, which can be thought of as a person walking
faster/slower. This augmentation step is based on the idea of [8] where a small window of a data trace is warped. Data
augmentation increases the number of training examples to 3,640. Since our time traces are all of varying length, we
zero-padded the time-series data to equal length, which is necessary for the CNN.

In order to make our input data of higher dimension, and thus enhance the information, we also incorporated frequency
data. Each of the six axes (3D acceleration, 3D angular velocity) is transformed into the frequency domain by means of
FFT before zero-padding. As the time data is recorded with a sample rate of 50 Hz (F}) the FFT results in a frequency
vector from 0 to 25 Hz (F/2).

Figure 1(a)-(c) show time-series data of three acceleration samples from the dataset. All data traces are normalized to
zero mean and unit variance. While the “walking” activity can be easily distinguished from the other two activities,
differentiating “sitting” and “standing” activities from each other is much harder. Figure 1(d)-(f) show the respective
frequency spectrum obtained by performing a fast Fourier transform on the normalized time-series data.

a X a X
0.6) 0.6 1 -
0.4 ’ 0.4 1 ‘
02 L Ll Ladidaedo ol b 1aa 02 " X Mo
0 vl S VA 0 - i Yoy NI AR s il
0 5 10 15 20 25 0 5 10 15 20 25
(d) “Walking” frequency spectrum. (e) “Sitting” frequency spectrum. (f) “Standing” frequency spectrum.

Figure 1: Time-series and frequency data of three sample acceleration time traces.

'nttps://github. com/akashlevy/HATRNet

3 Methods

We used Keras [9], a popular deep learning front-end library, to implement our neural network. Google’s TensorFlow
framework [10] was used as the backend. Our preprocessing was done with MATLAB, SciPy [11], and the scikit-learn
library [12]. We examined sequence networks as well as convolutional networks to classify the time series data. We
found that convolutional networks produced higher performance so we iterated and focused our later efforts on this

family of solutions. We used a categorical cross-entropy loss function for all our models: L(y,§) = — Zzl ylog(9)

3.1 Sequence Model (LSTM)

Our hypothesis was that sequence models would perform well, given that we are dealing with sequential time-series
data, potentially having long-term correlations between the data points. We tested a 2-layer LSTM model shown in
Figure 2(a) using the CuDNN library [13], and obtained a maximum of 81.89% accuracy with our best hyperparameter
set (we manually tweaked the hyperparameters over a small range). This approach produced significantly lower
accuracy than our convolutional model, so we focused our efforts on refining that model instead of further developing
our sequence model (following the philosophy of rapid iteration). Our chosen hyperparameters were a = 0.0005
(learning rate), $; = 0.9 (decay factor 1), B2 = 0.999 (decay factor 2), with ¢ = 0 (no fuzz factor), and no learning rate
decay.

input: | (None, None, 6)

input_1: InputLayer

output: | (None, None, 6)

input: (None, None, 6)
cu_dnnlstm_1: CuDNNLSTM

output: | (None, None, 128)

input: | (None, None, 128)

cu_dnnlstm_2: CuDNNLSTM

output: (None, 32)

input: | (None, 32)

dense_1: Dense
output: | (None, 13)

(a) Our LSTM model. Our first LSTM layer takes sensor data as
input, with 6 input channels and variable length sequences/batch
sizes (hence the two Nones in input size), and produce an output
sequence with 128 channels of the same length as the input. Our
second LSTM layer takes an input sequence with 128 channels
and produces an output of length 32. This is fed into a dense layer
with a softmax activation function, which produces the output
classification.

(b) Our deep convolutional model. The left subnetwork takes the
time traces as input, with 6 zero-padded input channels. The right
subnetwork takes the frequency and phase traces as input, with
12 interpolated input channels.

Figure 2: The LSTM model and deep convolutional model

3.2 Deep Convolutional Network

Convolutional neural networks are unique due to their translational invariance and ability to learn without prior
knowledge or hand-engineered features. It was thought that the translationally invariant filters would not perform
well on postural transitions due to their aperiodic time traces. It was found that filters of large width along the time
dimension (Conv1D filter size: 1x14, Conv2D filter size 3x42), were able to successfully learn and classify all postural
activities and transitions with an overall error rate of 3.29%.

The deep convolutional network employed two notable design choices: a Siamese (non-weight sharing) neural network
architecture and late sensor fusion. The two subnetworks were leveraged to encode the (1) time and (2) frequency/phase
representations of the signals. The non-weight sharing Siamese network was selected, since the time- and frequency-
domain representations of the traces are in different domains and should not be convolved with the same filters. Late
sensor fusion in the subnetworks, analogous to [2], was implemented with two Conv1D blocks (Conv{1,2}D block:
Conv{1,2}D, ReLU, BatchNormalization, MaxPooling2D, Dropout) followed by a Conv2D block, treating the signals
discretely and allowing the late Conv2D to operate on the encoded traces, leading to more efficient feature extraction.

It is imperative that the Conv2D block convolves across either the 3-axial linear acceleration traces or the 3-axial
angular velocity traces due to independence of the two sets of traces. This was achieved using a vertical stride of 3.
Lastly, instead of using a final dense layer in the subnetworks, it was empirically determined that a global average
pooling layer resulted in increased accuracy before concatenating the time and frequency/phase subnetworks. Our
final chosen hyperparameters were learning rate=0.0026, filter number=60, Conv1D filter size=1x14, Conv2D filter
size=3x42, Dense layer size=71, Dropout=0.3660.

4 Experiments/Results/Discussion

4.1 Hyperparameter tuning

As described in the previous section the CNN with late sensor fusion outperforms the LSTM model. Hyperparameter
search was performed over a defined search space in a random fashion. The following parameters were chosen to be
variable: learning rate, batch size, number of Conv1D blocks, number of filters in first/last Conv1D block, kernel width
in Conv1D blocks, kernel width in Conv2D block, dropout percentage and size of fully-connected layer.

The hyperparameter search was conducted in two steps: a coarse-grain and a fine-grain search. In the coarse-grain run
all parameters were assigned randomly in a wide range of values. One coarse-grain run was performed on around 900
different random networks. After evaluating the coarse-grain run, the parameter range was decreased and a fine-grain
run was performed with around 200 different random networks and five runs each in order to average over different
random initializations.

Figure 3 shows the validation accuracy across the coarse-grain search space of two example hyperparameters. In (a), the
validation accuracy is plotted against the learning rate, which nicely shows a learning rate optimum between 0.001 and
0.01. In (b), the validation accuracy is plotted against the dropout rate, which led to the insight that the convolutional
architecture does not need a high dropout rate, because it inherently regularizes itself. The noisy nature of both graphs
is due to the fact that in each run all parameters are random, so even if the learning rate is optimal other poor parameters
might lead to a low validation accuracy.

Accuracy (%) Raw Accuracy (%) Raw
100 —— Smoothed 100 —— Smoothed
il AT i 8() lwuliu.‘u‘mumllllll W
€0 ‘[_ ’\ 1‘\‘]‘ 1' i H” l’ ﬁ“"d il m
20 ‘ Il LIV i rm
20 \ [R— 20
0 +——rrr——rrrrr——rrr——rrrr— """’I 0 - T T
107* 107* 1072 107' 10° 10! 0 20 40 60 80
Learning Rate Dropout (%)
(a) Learning Rate (b) Dropout Percentage

Figure 3: Validation accuracy across different hyperparameters

4.2 Discussion

Table 1 shows the confusion matrices of [1], [2] and this work. In comparison to [1] and [2], we did not cut the data into
smaller 2.5-second chunks. Instead, we used the whole data traces that were provided in the dataset, which included
variable-size sequences. As a result, we had fewer data samples to work with (this can be clearly seen in our confusion
matrix reported below). Additionally, HATRNet does not group postural transitions. As a result of the discrepancies
between our datasets and the ones in literature, our results are not directly comparable. However, it is interesting to note
how longer time traces resulted in increased accuracy.

Table 1: Top: Confusion matrices from [1] (left) and [2] (right). Bottom: This work. Sitting and standing confusion
numbers are highlighted in bold.

WA WU WD SI ST LD PT WA WU WD SI ST LD
WA 1834 64 S 3 2 0 1 WA 487 0 9 0 0 0
wu 10 1743 51 5 5 0 16 WU 2 468 0 0 0 1
WD 0 2 1671 1 7 0 1 WD 0 0 420 0 0 0
SI 0 0 0 1875 94 6 3 SI 0 2 0 443 46 0
ST 0 2 0 109 2049 0 1 ST 0 0 0 16 516 0
LD 0 0 0 1 0 2148 2 LD 0 0 0 0 0 537
PT 0 1 2 0 0 0 1036
WA WU WD SI ST LD STSI SI-ST SI-L L-SI ST-L L-ST

WA 21 0 1 0 0 0 0 0 0 0 0 0

WU 0 36 0 0 0 0 1 0 0 0 0 0

WD 0 0 33 0 0 0 0 0 0 0 0 0

SI 0 0 0 20 0 0 0 0 0 0 0 0

ST 0 0 0 2 27 0 0 0 0 0 0 0

LD 0 0 0 0 0 26 0 0 0 0 0 0

ST-SI 0 0 0 0 0 0 19 0 0 0 0 0

SI-ST 0 0 0 0 0 0 0 10 0 0 0 0

SI-L 0 0 0 0 0 0 0 0 11 0 0 0

L-SI 0 0 0 0 0 0 0 0 0 15 0 2

ST-L 0 0 0 0 0 0 1 0 1 0 10 0

L-ST 0 0 0 0 0 0 0 0 0 0 0 o

WA: Walking, WU: Walking-Upstairs, WD: Walking-Downstairs, SI: Sitting, ST: Standing, LD: Laying-Down, PT: Postural Transition, ST-SI: Stand-to-Sit, SI-ST:
Sit-to-Stand, SI-L: Sit-to-Lie, L-SI: Lie-to-Sit, ST-L: Stand-to-Lie, L-ST: Lie-to-Stand

4.3 Results with LSTM vs. Convolutional Network

Table 2 shows the achieved error rates of the different architectures of this work and of [1] and [2]. CNN1 represents the
convolutional neural network trained to classify all 12 activities and postural transitions while the postural transitions
are clustered in CNN2 leading to seven categories and a fair comparison to our baseline model of [1]. We achieved a
minimum error rate of 0.82 %, a decrease of 3.9x compared to the baseline.

Table 2: Comparison of neural network accuracy.
CNNI1 CNN2 LST™M SVM [1] (baseline) Perceptionnet (CNN) [2]

Number of categories 12 7 12 7 6
Error Rate 329% 0.82% 1811 % 322 % 2.75 %

5 Conclusion/Future Work

Here, we have demonstrated state-of-the-art performance on the SBHAR dataset using an end-to-end deep learning
approach. Using several techniques, including preprocessing, incorporation of spectral information, late sensor fusion,
data augmentation, and highly-tuned convolutional networks, we achieve state-of-the-art performance with an accuracy
of 99.18% with our final model.

Somewhat surprisingly, LSTM, a sequence model designed for sequential data, performed less well—possibly due to
short-term correlations in the sequences that were better captured with convolutional filters. Future work might include
model ensembling using data representations extracted from sequence models (such as LSTM), or incorporation of
hand-extracted features as in [1]. Overall, the techniques behind HATRNet should enable high-fidelity smartphone
health tracking, advancing the field of customized healthcare.

6 Contributions

Nicholas wrote most of the Keras code used by the team as well as some of the preprocessing code. He developed the
Siamese convolutional network architecture with late sensor fusion, and helped Jonas with hyperparameter tuning. He
wrote the section on the convolutional architecture as well as lead the efforts on the poster.

Akash worked on the sequence models in Keras, and wrote the initial outline for the report. He also wrote the section on
LSTMs as well as the introduction/conclusion. He set up the AWS GPU machine for training, formatted the ISTEX for
the report, and helped produce some of the figures.

Jonas wrote most of the preprocessing code, including splitting, data augmentation, and spectral analysis. He also
executed and evaluated the hyperparameter search of the convolutional architecture. He created the figures and wrote
the sections on preprocessing and hyperparameter tuning.

References

[1] J.-L. Reyes-Ortiz, L. Oneto, A. Sama, X. Parra, and D. Anguita, “Transition-aware human activity recognition
using smartphones,” Neurocomput., vol. 171, pp. 754-767, Jan. 2016.

[2] P. Kasnesis, C. Z. Patrikakis, and 1. S. Venieris, “Perceptionnet: A deep convolutional neural network for late
sensor fusion,” CoRR, vol. abs/1811.00170, 2018.

[3] C. A.J. O.D. Fuentes, L. Gonzalez-Abril, “Online motion recognition using an accelerometer in a mobile device,”
Expert systems with applications, 2011.

[4] M. Kose, O. Incel, and C. Ersoy, “Online human activity recognition on smart phones,” Workshop on Mobile
Sensing: From Smartphones and Wearables to Big Data, 01 2012.

[5] J. Qi, P. Yang, M. Hanneghan, and S. Tang, “Multiple density maps information fusion for effectively assessing
intensity pattern of lifelogging physical activity,” Neurocomputing, vol. 220, pp. 199-209, 2017.

[6] C. Reiff, K. Marlatt, and D. Dengel, “Difference in caloric expenditure in sitting versus standing desks,” Journal
of physical activity & health, vol. 9, pp. 1009-11, 09 2012.

[7] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L Reyes-Ortiz, “A public domain dataset for human activity
recognition using smartphones,” 21th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, ESANN, 01 2013.

[8] A.L. Guennec, S. Malinowski, and R. Tavenard, “Data augmentation for time series classification using con-
volutional neural networks,” ECML/PKDD Workshop on Advanced Analytics andLearning on Temporal Data,
2016.

[9] F. Chollet et al., “Keras.” https://keras.io, 2015.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software available from
tensorflow.org.

[11] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools for Python,” 2001.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine Learning in Python ,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[13] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, “cudnn: Efficient
primitives for deep learning,” arXiv preprint arXiv:1410.0759, 2014.

