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Abstract

In this project we explore a method of predicting stock price movements.
We apply a long short term memory (LSTM) based recurrent neural
network (RNN) to predict whether the S&P 500 will increase (up) or
decrease (down) over the next trading month using the features volatility,
return and trading volume as three sets of time sequence data. We use
accuracy and the area under the (ROC) curve (AUC) as the metric to tune
hyper-parameters and to measure the performance of our prediction. It
turns out that the LSTM models perform much like the corresponding
baseline linear classification models.

1 Introduction

Artificial Intelligence is changing virtually every aspect of our lives. Today’s algorithms
accomplish tasks that until recently only expert humans could perform. As it relates to
finance, this 1s an exciting time to adopt a disruptive technology that will transform how
investment decisions are made on a broad scale.

Models that explain the returns of individual stocks generally use company and stock
characteristics, e.g., the market prices of financial instruments and companies’ accounting
data. These characteristics can also be used to predict expected stock returns out-of-sample.
Most studies use simple linear models to form these predictions [1] or [2]. An increasing body
of academic literature documents that more sophisticated tools from the Machine Learning
(ML) and Deep Learning (DL) repertoire, which allow for nonlinear predictor interactions,
can improve the stock return forecasts [3], [4] or [5].

The main goal of this project is to investigate whether modern DL techniques can be utilized
to more efficiently predict the movements of the stock market. Specifically, we train LSTM-
networks with time series price-volume data and compare their out-of-sample return
predictability with the performance of simple logistic regressions (our baseline models).



2 Related work

The financial industry has been slow to integrate DL techniques into their systems. Moreover,
successful financial models are usually proprietary, and it is therefore difficult to find
compelling literature with state-of-the-art performance on our specific task. However, the
academic community has started to acknowledge the advances in Financial Machine
Learning. Consequently, there are increasingly more papers that attempt to apply DL methods
to tackle the immensely complex problem of stock market prediction. One common theme
amongst these works is the choice of an LSTM based recurrent neural network. For example,
Gao applied an LSTM network to forecast the stock markets in six different industries in the
US, using 359 stock features as input [6]. Nelson et al generated 175 features for each 15
minutes of stock data using an LSTM network to predict whether the stock price will go up or
down [7]. A third study by Chen et al uses historical stock price data to predict whether a
stock price will rise, fall or remain in a day, using an LSTM architecture as well [§].

Inspired by the above papers, this project also proposes a model based on an LSTM
architecture to predict price movements using dominant predictive signals that include
variations on momentum, volatility and liquidity as input. These input features have been
shown to have widespread predictive power.

3 Dataset and Features

3.1 Raw Data

The dataset provides daily quotes for the S&P 500 going back to 1980 and is downloaded
using the Yahoo Finance API. It comes with the “Open”, “High”, “Low”, “Close”, “Adj
Close”, and “Volume” for each day. In total, the raw dataset consists of approximately 10,000
rows and 6 columns.

3.2 Features

The feature set includes rolling (1) logarithmic returns, (i1) trading volumes, and (iii)
volatilities for the past i € {1,2,3,4k | 1 < k < 20} trading week(s).

First, daily logarithmic returns can be computed as shown below:

(1) Logarithmicreturns = In (de )
d-1

Since logarithmic returns are additive over time, we can simply sum over the corresponding
number of daily returns to compute the rolling logarithmic returns for each of the past i
trading weeks. This gives us 23 features.

Next, rolling volatilities for each of the past i trading weeks can be calculated as follows:

(2) Volatilities = o(daily return) * \/days iniweek(s)

This provides us with additional 23 features.

Lastly, we compute the rolling average trading volume for each of the past i trading weeks,
which adds another 23 features to our feature set. This results in a total of 69 features.



3.3 Scaling

In the next step, all features are rescaled before training in order to (i) make the contours of
the cost function more symmetrical in shape and thus easier to optimize, (ii) make training
less sensitive to the scale of features and (i11) ensure regularization does not behave differently
for different scaling. Normalization and Standardization are two well-known methods for
rescaling data. We will try both techniques and choose the one that works best for our
application.

3.3.1 Standardization

Standardization rescales the data to have a mean () of 0 and a standard deviation (o) of 1
(unit variance):
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3.3.2 Normalization
On the other hand, Normalization scales all numeric variables in the range [0,1]:
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3.4 Separating Test Data

Since K-Fold Cross Validation fails in finance [9], we instead use walk-forward-cross-
validation with a dev size of 10% for our model development (hyper-parameter tuning).
Furthermore, to provide an unbiased evaluation of our final model we withhold the last 10%
of our data as a separate test set. This set is only used once our model is completely trained
(using the train and validation sets).!

3.5 Label Distribution

The labels are factors with levels Up and Down indicating whether the market had a positive
or negative return on a given month (classification problem). In the training set the
distribution is 62%-38% in favor of “Up”, and for the test set it is 64%-36% also in favor of
4CUp”.

4 Models
4.1 Baseline Models

To provide linear baselines for reference, simple logistic regressions are implemented. As
described in Section 3.4, we use walk-forward-cross-validation for model development and
then evaluate the performance on the hold out test set. As part of the optimization, the
penalties Ridge, Lasso, Elastic Net and their corresponding hyperparameters, Alpha and
Lambda, are tuned. Both grid search algorithms and random search algorithms are used to
choose the optimal hyper-parameters. It turns out that the standardized data is best suited for
this task.

! The details of this procedure can be found in the GitHub Repository
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4.2 LSTM Networks

Given the recent success of RNNs in the area of sequential data and taking into account the
temporal sequence of our data, we apply such an architecture to our prediction task.
Specifically, we use an LSTM network, which is a special type of a recurring neural network
that works much better than the standard version for many tasks. One of the appeals of
LSTM's is the idea that they are able to learn long-term dependencies. Our network structure
1s depicted in the following figure.
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Figure 1: LSTM unit and Network Structure

The key to LSTM's is the cell state, the horizontal line that runs through the top of the
diagram. With only a few linear interactions, it is easy for information to simply flow through.
However, the LSTM has the ability to remove or add information to the cell state, carefully
controlled by three gates:

The first gate decides which information is discarded from the cell state. This decision is
made by a sigmoid layer called the “forget gate layer”. It considers a<t~> and x<¢>
outputs a number between 0 (forget) and 1 (keep) for each number in the cell state ¢
To update the cell state, we multiply ¢<*=*> by I[~~.

and
<t—-1>

The second gate decides which new information will be stored in the cell state. This decision
is made by a sigmoid layer called the “update gate layer”. It considers a vector of new
candidate values ¢<*> created by a tanh layer and outputs a number between 0 (update) and 1
<t>, [<E> g o<t-1>

; :

(no update) for each candidate value. To update the cell state we add ¢

Finally, the third gate decides which information will be outputted. This decision is made by a
sigmoid layer called the “output gate layer”. It considers the filtered (first step) and updated
(second step) cell state ¢<*> which is put through a tanh to push the values to be between
—1 and 1 and outputs a number between 0 (no output) and 1 (output). To compute the output
a<*> we multiply [;*> by tanh(c<>)? [10].

2 In theory, LSTM models are meant to consider the entire sequence for our prediction task. In practice,
however, we need to create batches to train a model with a backprogation algorithm. Since the gradients cannot
backpropagate between batches, the LSTM model only remembers what happened within a batch. Thus, at the
beginning of each batch the states are initialized and set to 0 (therefore not taking into account previous
information). To circumvent this problem during training, Keras introduces a stateful flag that reminds the model
of what happened in the previous batch by passing states from the previous batch to the next batch. A stateful
LSTM model also makes a lot of sense during the prediction phase, since otherwise the LSTM model trained
with batch time series of length T assumes that the hidden states are initialized to zero at every T steps.
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4.3 Experiment Design

As aforementioned, we use walk-forward-cross-validation for model development and then
evaluate the performance on the hold out test set. Due to the nature of our features (returns,
volatilities, and trading volumes of the past week(s), we apply a stateful LSTM architecture
with a batch size and a time step of 1 to our prediction problem. As part of the optimization,
we search through different hyperparameters for each model, including dropout rate and the
number of hidden units. Both grid search algorithms and random search algorithms are used
to choose the optimal hyper-parameters.

4.4 Experiment Results

We have three sets of time sequence data: (1) volatility, (2) return and (3) trading volume. By
combining these feature sets, 7 models are created and compared with their corresponding
baseline model. As above mentioned, we use accuracy and AUC as our evaluation metrics.
The following table summarizes the results for the various model contractions (both the
confusion matrices and the ROC curves for all models can be found on Github):

Model Description Dev/Test Acc. Dev/ Tes? Acc. Test AUC Test A_UC
LSTM Baseline LSTM Baseline

1 Feature Set 1 61.02% / 64.38% 54.48% / 65.01% 0.52 0.52

2 Feature Set 2 55.62%/65.01% 55.44% / 66.07% 0.52 0.54

3 Feature Set 3 56.49% / 65.12% 55.21%/ 63.95% 0.54 0.48

4 Feature Sets 1 +2 54.42% / 63.32% 52.06% / 60.04% 0.52 0.54

5 Feature Sets 1 +3 59.34% / 65.96% 55.52%/ 59.09% 0.46 0.53

6 Feature Sets 2 + 3 49.56% / 63.85% 54.19% / 65.54% 0.55 0.55

7 Feature Sets 1 +2 +3 53.13% / 65.54% 52.28% / 66.17% 0.53 0.50

Table 1 Summary of model results

From a trading perspective, we are interested in maximizing accuracy, as this tells us how
well our model performs on both Up’s and Down's. However, as described in Section 3.5,
there 1s a significant imbalance both in the training (62% “Up’s”) and the test data (64%
Up's). Therefore, we must take accuracy with a grain of salt and the AUC score is probably a
better choice for our model performance as it is insensitive to class imbalance. As shown in
table 1, all 7 models have a test AUC score close to 0.5, which is an unsatisfactory result. One
possible reason is that our features do not contain enough information to predict future
returns. Moreover, our input data is very noisy, and it is difficult for the classifier to
generalize to other periods due to the non-stationarity of our data.

5. Conclusion and Future Work

From this project, we can conclude that stock price forecasting remains a difficult task even
after simplifying the problem to a binary price trend and applying powerful deep learning
models. Nonetheless, this information is useful in guiding future work, specifically in
determining relevant feature sets and model architectures. We have shown that it might need
more than Price/Volume/Volatility data in order to predict future returns. Potential future
direction for this project may include:

= Enriching our dataset. We should include non-technical features such as fundamental
companies’ accounting data

» Changing our prediction objective. We could use a regression model instead of a
classification model. Rather than prediction “Up” or “Down”, we could sort our
predictions in certain quantiles and try to predict bucket probability.

= Exploring new models. We should experiment with different models such as attention

= Experimenting with different time horizons. We can explore a variety of different window
sizes (many high-frequency traders consume data in milliseconds)
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