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Background

- We've seen from Taskonomy [1] that establishing and leveraging relationships between tasks can build
better, more generalizable models. These tasks have been hand-chosen (bias), and in reality there are a
much larger number of tasks, and it's impractical to annotate all or a large number of them.

- This project aims to generate these tasks by defining a task and investigate a series of reduction
mechanisms. The ultimate goal would be to apply these as well as other reduction mechanisms to filter

down to a set of generated tasks that can be learned from other models, which can then be used for
transfer learning purposes.

(I) Task-specific Modeling (IT) Transfer Modeling (III) Task Affinity (IV) Compute Taxonomy
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Figure 1: Overview of Taskonomy, which studied the clear structure between tasks and leverages them to reduce
demand for labeled data.



Dataset and Architecture Used

- We pick a subset of CIFAR100 classes, and re-formulate the task into a binary classification problem.
- Use a shallow model to avoid excessive overfitting, since datasets themselves are quite small.
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Figure 2: Sample CIFAR classes
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Figure 3: Sample run of SimpleNet on 4 randomly
chosen classes.



Random Features

- Can we reduce dimensionality of our input space? If yes, we can work with larger images, scale down

without incorporating any priors into model.
- Use randomly initialized ResNets as feature extractors - better than using pretrained networks or other

feature extractors for our purposes.

- 3x8x8 feature shapes show promise (a 4x dimensionality savings)!

Original Features on Known Tasks - 3x32x32 shape, 200 images, 1 resnet(s)
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Random Features on Ship Task - 3x8x8 shape, 200 images, 1 resnet(s)
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Figure 4: Random features exploration results.

200 image dataset. Random features (RFs) of shape 3x4x4.
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Random Features (Random Task) - 200 images, 1 resnets, 3x16x16 feature shape
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Learnability Studies
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Figure 6: Ablation analysis for known task.
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Figure 8: Ablation analysis for random task.



Task Discovery Search

- After clustering (both mean-shift and k-means) proved to be unfruitful in reducing task space, | instead
formulated the random search into a gradient-free optimization problem, optimizing over “taskness score”.
- Initial results on smaller dataset (50 label set, 1:4 class distribution, 10 positive datapoints) look promising!
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Figure 10: Run 2, taskness score 1-0.29/0.45 = 0.35
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Figure 12: Run 4, taskness score 1-0.17/0.45 = 0.62



Conclusion

- We see encouraging results, as discovered task look meaningful and return real task-like taskness scores.
The next logical step would be to perform a large scale task discovery search. This involves enforcing
orthogonality among found tasks. l.e. we want to find sufficiently different tasks in each subsequent search.
We hope to discover the original CIFAR100 tasks in this dataset, alongside other real, interesting tasks. If
successful, we can leverage these tasks for transfer learning purposes. An automated method of
discovering tasks such as the method presented in this paper may unlock the true potential of transfer
learning. We hope to submit to NeurlPS this upcoming May.
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