

Using daily inpatient Serum Creatinine to predict Chronic Kidney Disease in children

Department of Management Science and Engineering, Stanford University

Stanford ENGINEERING Management Science & Engineering

W Alton Russell

Background

- Pediatric patients with abnormal renal function during hospitalization are at risk of developing chronic kidney disease (CKD) months later.
- LPCH nephrologists do not have capacity to provide follow-up renal monitoring and care to all at-risk patients, and it is unknown which are at greatest risk.

Objective

Using data available at time of discharge, can we predict the development of CKD 3-12 months later?

Data

Data on 4,179 patients were pulled and processed

Methods

Data processing:

- Labeled patients as CKD+/- based on lab values from 3-12 months post-discharge
- For initial models, used only serum creatinine lab values (models with additional features planned for future work)

Used subset of data with >2 SCr labs to predict

Used subset of data with >3 SCr labs to predict

Used subset of data with >3 SCr labs to predict

outcome using the last 3 labs from the stay

outcome using the last 3 labs

outcome using the last 4 labs

Stratified Train/Dev/Test Split

Classified based on outcome and number of lab values available for stratified sampling:

Outcome_Label	Count_SCr_measurements	Class Cor	int_examples
CKD-	1-2	Α-	1056
CKD+	1-2	A+	67
CKD-	3	B-	586
CKD+	3	B+	41
CKD-	4	C-	455
CKD+	4	C+	33
CKD-	>4	D-	1727
CKD+	>4	D+	206

Train: 3128, Dev: 834, Test: 209 examples

Model Development Model Specifications common to all models Developed 3 models:

- Fully-connected models with 100 hidden layers
- Cross-entropy loss as cost function
- Adam optimization, learning rate of .0001
- Area under the ROC curve (AUC) used as model performance metric

Model_Description	Dataset	$Train_AUC$	Dev_AUC
3 inputs, 1 hidden layer, 100 units	>2 SCr	0.7876	0.7866
3 inputs, 1 hidden layer, 100 units	>3 SCr	0.7890	0.7779
4 inputs, $1\ \mathrm{hidden}$ layer, $100\ \mathrm{units}$	>3 SCr	0.7911	0.7762

- Inpatient lab values are predictive of developing chronic kidney disease after hospitalization
- Using the last 3 labs, I achieved a Dev AUC of 0.7866, which is clinically useful.
- Adding a fourth lab value increased the training AUC but did not improve the dev AUC, suggesting overfitting. Regularization may improve performance with four lab values.

Planned Implementation

Future Work

I plan to develop more complex models and compare performance to my baseline models. Specifically:

- LTSM recurrent neural network that can handle variable length lab value vectors
- Hybrid model that uses an encoding from an LTSM recurrent neural network together with fixed-length inputs (age, height, weight, etc.) as features for fully connected model

Acknowledgements

Thank you to Dr. Scott Sutherland, for your vision, direction, and medical expertise; David Scheinker, for your advice and mentorship, and Abhijeet Shenoi!

References

Augustynowicz, Monika, Agnieszka Bargenda-Lange, Krzysztof Kalwak, Danuta Zwolinska, and Kinga Musiał. 2019. "Markers of acute kidney injury in children undergoing hematopiotici stem cell transplantation." Advances in Clinical and Experimental Medicine (28 (8): 0-0.

10.1111/inv.13443.
hotora, Rakesh, Kianoush B. Kashani, Etienne Macedo, Jihoon Kim, Josee Bouchard, Susan Wynn ngxi Li, Lucila Ohno-Machado, and Ravindra Mehta. 2017. "A risk prediction score for acute kid ry in the intensive care unit." Nephrology Dialysis Transplantation 32 (5): 814–22.

