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*+ Pediatric patients with abnormal renal function |Data processing: Stratified Train/Dev/Test Split 1 plan to develop more complex models and compare
during hospitalization are at risk of developing * Classified based on outcome and number of lab |  performance to my baseline models. Specifically:
chronic kidney disease (CKD) months later. * Labeled patients as CKD+/- based on lab values values available for stratified sampling: e« LTSM recurrent neural network that can handle

+ LPCH nephrologists do not have capacity to provide from 3-12 months post-discharge Do T Comt S0+ ooy Gl ot o variable length lab value vectors
follow-up renal monitoring and care to all at-risk |* For initial models, used only serum creatinine =3 i a * Hybrid model that uses an encoding from an LTSM
patients, and it is unknown which are at greatest risk. lab values (models with additional features ;:“E E ? ; recurrent neural network together with fixed-length

planned for future work) Dt L inputs (age, height, weight, etc.) as features for fully
Objective L = R connected model
e Train: 3128, Dev: 834, Test: 209 examples Labualves [ TrsMnetwork
Using data available at time of discharge, can we predict a — a
the development of CKD 3-12 months later? s " "“‘
_ _ Model Development Model Specifications common to all models °__.“__.°
Healthy renal function y ; Developed 3 models: . .
« Used subset of data with >2 SCr labs to predlc[ . Fully-connec[ed models with 100 hidden layers __-__ Labvalue
; Ersecing
outcome using the last 3 labs from the stay * Cross-entropy loss as cost function
* Used subset of data with >3 SCr labs to predict * Adam optimization, learning rate of .0001 ot Rt
outcome using the last 3 labs * Area under the ROC curve (AUC) used as e ouput
* Used subset of data with >3 SCr labs to predict model performance metric

outcome using the last 4 labs

CKD stage 5/ ESRD

Architecture of hybrid model planned for future

work.
¢ Data on 4,179 patients were pulled and processed Model Description Dataset Train AUC Dev_AUC

3 inputs, 1 hidden layer, 100 units >2 SCr 0.7876 0.7866 _
3 inputs, 1 hidden layer, 100 units >3 SCr 0.7890 0.7779 Acknowledgements
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 Age at death disposition * Using the last 3 labs, I achieved a Dev AUC of 0.7866, which is clinically useful.

* Adding a fourth lab value increased the training AUC but did not improve the dev AUC, References
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