Improving Mobile Robot Navigation with Deep Neural Robot Control

Stanford
ENGINEERING

Mentor: Ahmadreza Momeni

Max Ferguson
CS230 Deep Learning

Introduction

We propose a new method which combines
reinforcement learning with traditional search-
based path-planning, to solve long navigation
problems. This approach, referred to as Deep
Neural Robot Control (DNRC), performs
exceptionally well on several robot navigation
tasks, learning a human-like policy for
navigation and collision avoidance. We also
introduce framework for zero-shot transfer of
learned policies from simulation to the physical
world.

A good navigation algorithm should ensure
the robot moves to the target position
quickly and safely. Specifically, a good
mobile robot control system should:

Avoid colliding with walls and stationary
objects

Anticipate the movement of people and
other robots, and act to avoid collision
wherever possible

Minimize acceleration and rotation of the
robot, so as to conserve battery resources
Reach the target destination as quickly
as possible, given the above conditions

The navigation problem is represented as a
Partially Observed Markov Decision Process
(POMDP). Observations of the state space
include the velocity of the robot, as well as a
multi-layer map of the surroundings:

Frobot + €1 Observations include

Yrobot + €5 automatically

Orobot + €5 generated bitmaps

Ztarget + €6 describing the

o(s) = m?n“‘r € surroundings

Tobjects Ryau(s,a) = —0.001 [|max(|a| - 0.6,0)]*
Trotots e

Loreoigomts | Ropin(5,0) = ~0.001 ||
TLiargets Reottivion (s, @) = max(~1, ~0.3¢200-4~)

R(s,a) = Riarget(s, @) + Reottision (3,) + Roate(s, @) + Rspin(s, a)

Navigation and Control with Deep Reinforcement Learning

Distributed RL

Simulated Actions O(10%)

Robot Real
Sensced Actions
Observations O(10°)

Physical

P ion (SER) Physical Robot

Figure 1: Learning a physical-world control policy through simulation and distributed reinforcement learning

Deep Neural Robot Control

In DNRC, we learn three functions by interacting
with the environment: The actor m(s), the critic
Qz(s,a,t), and the value function V,(s,t). At the
start of each episode, the A* search algorithm is
used to find the shortest distance from the current
position to the target, relying on Vg(s,t) as a
distance metric. This path is mapped back to a path
in Euclidean space. Finally, we place checkpoints
along the shortest path and execute m(s), repeatedly
to move between each checkpoint towards the goal.

The agent is trained using a variant of the DDPG
algorithm [1], along with the APEX asynchronous
optimizer with distributed prioritized replay buffers

(2.
V(g @),)

Robot

Figure 2: Value function projected into Euclidean space and overlaid on the
house floorplan

Simplified Environment Abstraction

=

Figure 3: Playground Environment

o=
e |

Figure 5: Building Environment

Figure 4: House Environment

Each environment is generated by scanning a real
building using sensors on the mobile robot. During
training, observations from these environments are
generated using a distributed computing cluster
with 576 CPU cores and 2304 GB of RAM.

Figure 6: Simplified environment abstraction. The two black robots must
reach their respective targets, depicted as green and purple cubes

(a) 100 million training steps, 2 hours (b) 800 million training steps, 16 hours
Figure 6: DNRC learns to anticipate the movement of other objects, and
always pass other robots on the same side (for example on the right).

(a) 100 million training steps, 2 hours

(b) 800 million training steps, 16 hours

Figure 7: Narrow hallways can lead to a deadlock situation when
robots are travelling in opposing directions. DNRC learns to let the
other robot passed in a narrow hallway, so as to avoid deadlock

Table 1: Average reward in different environments compared to vanilla RL.
Environment PPO | TD3 | DNRC (Ours)
Playground (3 Robots) | 0.91 0.93 0.96
House (3 robots) 0.44 0.45 0.91
Building (5 robots) 0.03 0.05 0.34

Conclusion

‘We proposed a new method, Deep Neural Robot
Control (DNRC), to improve robot control and
navigation. This approach performs exceptionally
well on several robot navigation tasks, learning a
human-like policy for navigation and collision
avoidance. We demonstrated that the DNRC
policy can be transferred to a physical robot,
using a simulated environment model as an
abstraction layer over the physical world.

References
[1] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods”, arXiv preprint

arXiv:1802.09477, 2018,

[2] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K.
Goldberg, J. E. Gonzalez, M. I Jordam, and L Stoica, “Rllib:
Abstractions for distributed reinforcement learning”, arXiv preprint
arXiv:1712.09381, 2017

Winter 2019

