

A Deep Learning Approach for Predicting Function of Non-coding Genomic Variants

Fred Lu

Advised by Zihuai He, PhD, Dept, of Neurology

BACKGROUND

A large variety of single-nucleotide polymorphisms in the genome are associated with specific diseases. Most such genomic variants occur in non-coding DNA sequences, so they are not directly involved in protein variation. This makes it challenging to understand their function.

Goal: Build neural networks to predict functional variants using epigenetic markers as predictors.

DATA & FEATURES

MPRA dataset for GM12878 (lymphoblastoid) cell line:

- 693 experimentally confirmed functional variants
- >22,000 negative variants

Cell/tissue-specific epigenetic features from ENCODE:

- 1016 features for each variant site
- Scores for each of 8 different markers in 127 different cells/tissues

- Dense: Fully connected net with dropout
- **PC Net:** Partially connected net, use sparseness to leverage inter-feature relationships
- Dense+VAT: add perturbation regularization to Dense

Benchmarks:

- GenoNet (He et al.): Published elastic net predictions
- · Logistic Regression: L2 reg. with 3-fold CV

SETUP

Data first split into train (85%) / test (15%). Models trained with iterated train (80%) / dev (20%) splits within train set.

The following metrics are used:

- · Average precision-recall (AUPR)
- Area under ROC curve (AUROC)

RESULTS

	Avg. validation		Test set	
Model	AUPR	AUROC	AUPR	AUROC
Logistic	0.259	0.764	0.228	0.738
GenoNet	0.251	0.740	0.222	0.728
Dense	0.266	0.761	0.232	0.747
PC Net	0.275	0.769	0.228	0.750
Dense+VAT	0.265	0.753	0.226	0.750

- Our model outperforms the benchmarks
- Models are relatively stable with architecture modifications

DISCUSSION

- Scores vary across chromosomes, but do not depend on number of training examples.
- PC and VAT may have tendency to overfit.
- Incorporate semi-supervised learning in the future

