Introduction

Fake news has affected everyone. It has been at core of
several instances of inciting mob, causing riots, influencing
elections, picking our leaders, and causing failure of justice.

To identify whether a statement is fake or not, Different
approaches have been explored in this effort:

- Different models — FC NN, LSTM, Hybrid

- Text vectorization techniques - TF-IDF and GloVe 2!
word embeddings

- Use of sentiment and statement context

Dataset

LIAR dataset [ is used, which has 12,805 short political
statements with six classes of output labels, and having text
and non-text attributes:

- Text: statement, subject, speaker, speaker's job title, state
info, party affiliation, location

- Not-text: history of count of statements by label type for
speaker

The dataset is randomly split 80-10-10 between train,
validation, and test. Label types are uniformly split between
all labels (17-19%), except 'pants-on-fire' label (~10%).

Input Features

Different combination of features have been compared:

- Statement + All text attributes

- Statement + All text attributes + Sentiment feature

- Statement + All text attributes + Sentiment feature + All
non-text attributes

Distribution of sentiments are generated using Sentiment

Treebank B

DeepNewsNet: Automated Fake News Classification

Alaukik Aggarwal
alaukika @ Stanford.edu
https://youtu.be/qYqBCtIEaBM

Architecture

- Deep fully-connected neural network having 9 fully- oforoa  03bua  SotmatAchaton
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100, and 6 hidden units.

- LSTM model having two LSTM layers having 300 Contonate

hidden units with dropout regularization, followed by a W

dense layer having 6 hidden units. OB Dropslt I I

- Hybrid architecture that combines LSTM model for Dounss. @ . Sentmen Disbution
representing text features and non-textual attributes like Toxt Model S
sentiment distribution and speaker history using fully- '

connected layers
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Predicted Labels

dataset benchmark. Improvement of model performance with addition of
sentiment features highlights the aspect of strong emotions in fake news.
Further, significant boost in accuracy by adding history of speeches for a
given speaker show the potential of context-aware models.

‘true” and ‘false’ are classified with high confidence,
however it gets fuzzy with other labels, especially
for similar labels like mostly-true and half-true.
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