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Introduction ' Model Architecture and Training \

Motivation
) ) ! 256x256 O 2D DCGAN model:
+ Flow properties (porosity an§ permeability) of porous media can Training images i
vary due to rock heterogeneity Label = 1 i Layer Type Filters Kernel Stride Padding Batch Norm Activation
+ Recreating variations of the pore network can be time-consuming Original H Generator
(both in the lab and computationally) dataset Discriminator (D) 1 ConvTransp2D 512 4x4 1 0 Yes ReLU
X . - black=solid 2 ComTumptD 256 4x4 2 1 Yes ReLU
+ Recent advances in deep learning show promising use of GANs white=pore 3 ConvTra ol 5
2 L 2 o N 3 onvTransp2D 128 4x4 2 1 Yes ReLU
for rapid generation of 3D images with no a priori model [1,2] - 4 ConvTransp2D 64 4x4 2 1 No Tanh
* Models used: vanilla DCGAN, conditional GAN Discriminator
) L . . Generator (G) 1 Conv2D 64 4x4 2 1 No LeakyReLU
+ Ways to improve training/image quality? I ) Conv2D 128 4x4 2 1 Yes
3 Conv2D 256 4x4 2 1 Yes
— 4 Conv2D 512 4x4 1 0 No Sigmoid
- ' Synthetic images
Flow = "
properties Random Label=0 Strategies:
noise (z) Yy - N
H + Modified generator loss function — log D(G(2))
Sampling Imaging Numerical simulation « Prevent vanishing gradients
H avw I - -~ (o x .
Obiective DCGAN  minmax By pyua(a) 108 D()] + By () [log(1 — D(G(2))] + One-sided label smoothing
+ Investigate effects of changing network parameters, e.g. loss 3 ax M . e g 2] . i i i
Mol 15 ety e DCGAN-GP  1min max E; v, (o) [108 D(@)] + Exnp, (o) log(1 = D(G(2))] + AE:[(||V2D(w)[|> — 1)?] * Vanilla DCGAN with gradient penalty
' i . i . - « Wasserstein distance with gradient penalty — shown to
+ Evaluate model performance against real images using 3 o Y] — 5 M, — 1)2 A
o Obaal Properiag DCGAN-WGP it max By, (1) [D(2)] = Barp. (o) [D(G(2))] + AE (Ve D(@)]]2 = 1)7)] improve convergence, no batch norm layer [4]
L J L J
Data Acquisition & Evaluation J.____________ Resuls | Conclusion
Erot ) P ——— DCGAN » DCGAN model performs well for 2D case using the log loss function with
" % ‘Generator and Discriminator Loss During Training and W“hout the gl’adient penalty term
Voxel size 6.12um g i A i _r i e N %
| - e 1 « Adjusting the Lipschitz constant can limit the discriminator’s learning
Loyolime spachs SRl » capacity, but had no significant effect on our dataset (may be too simple)
Training image size DAXER  GAsciaEGs 0 +  Adjusting discriminator parameters in the 3D model helps to speed up
# of training images 36,864 12,195 K training and prevent overfitting
§ Model Pore area  Perimeter, x 102  Euler characteristic, y x 10~ *
Post-processing: s Train set 184+£78 6.94 ~3.80 Future work
«filter (median) : ggé:zap eniii - o + Train on larger areas/volumes to reduce variability in porosity, etc.
+ threshold (Otsu) o « Improve training of 3D GAN to create reconstructions of the pore network as
O soo 1000 15000 000 25600 3000 3000 ) . - Ny
X <0 iteratins L inputs into numerical solvers for fluid flow
’ e = 3D DCGAN
i 1 Generator and Discriminator Loss During Training Gradient penalty norm _ Pore area, 7 s i
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