Deep Learning Insights into Many-Body Physics

Chao Wang, Mae Teo

 $cwang 15 @ stanford.edu, \ maehwee @ stanford.edu \\$

Introduction

· Phases of Matter: Broken Symmetries

Figure: (Left) An anti-ferromagn Valence Bond Solid (VBS) state.

Quantum Monte Carlo samples: complex-valued

Data

AF-to-VBS Transition.

matrices.

Figure: Data examples. Top four: VBS (h=1.5), bottom four: AF (h=2.9). For each row, leftmost: average over Monte Carlo samples (augmented), right three: individual samples.

Figure: Data examples. Same dataset as above. Reshaped back into real-space 8-by-8 square lattice, look at correlations of all sites with site (2,5).

Training

Figure: We expect a phase transition at an intermediate value of h Method: $\left[1\right]$

Architectures

- Logistic Regression
- Convolutional Neural Network (filters=5, size=5)
- Tensor Train [2]

$$W_{i_1\cdots i_d} = G_1[i_1]\cdots G_d[i_d] \qquad (1)$$

$$\hat{y}(\mathbf{x}) = \sum_{i_1=0}^{1} \cdots \sum_{i_d=0}^{1} \mathcal{W}_{i_1 \cdots i_d} \prod_{k=1}^{d} x_k^{i_k}$$
 (2)

$$\hat{y}(\mathbf{x}) = \mathcal{W}_{000} + \mathcal{W}_{100}x_1 + \mathcal{W}_{010}x_2 + \mathcal{W}_{001}x_3 + \mathcal{W}_{110}x_1x_2 + \mathcal{W}_{101}x_1x_3 + \mathcal{W}_{011}x_2x_3 + \mathcal{W}_{111}x_1x_2x_3$$
(3)

• Binary Cross Entropy Loss for all architectures

Results for QSL-to-AF Transition

- · Phase recognition task fails for all three architectures.
- Likely reason: QSL is a subtle topological phase with no local correlations, but strong global correlations.

Figure: Results, x-axis is h, y-axis is average predicted label. (red) Logistic regression, (green) CNN, (blue) TT.

Future

- For Tensor-Train: Should employ parameter sharing to exploit all symmetries.
- \bullet Identification of topological features remains an open research question in machine learning physics.

References

- [1] Peter Broecker, Juan Carrasquilla, Roger G Melko,
 - Machine learning quantum phases of matter beyond the fermion sign problem. Scientific reports, 7(1):8823, 2017
- [2] Alexander Novikov, Mikhail Trofimov, and Ivan
- Oseledets.
 - Exponential machines. arXiv preprint arXiv:1605.03795, 2016.

