1. MOTIVATION . . . .
Listen, Speak in Hindi!
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3. ARCHITECTURE: FULLY CONVOLUTIONAL TTS WITH GUIDED ATTENTION & SINUSOIDAL POSITION ENCODING
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JOURNEY OF A CHARACTER AND AUDIO SIGNAL
Sentence — Character — Character Embedding — Encoded Text
Audio — Mel-Spectrogram — Encoded Audio — Align with
Encoded Text — Predicted Mel — Train Text2Mel
Audio — Spectrogram (ground-truth Spec) vs. Mel — Predicted
Spec, to train SSRN

ARCHITECURE FEATURES
Stacked Dilated ConvID — Gain context information, Faster
Training
Highway Activations — Manage vanishing gradients
Guided Attention — Penalize non-diagonal attention matrix
Position Encoding — Reduce attention errors

Learned Character Embedding

Both pretrained and learned character
embedding show proximity to other
characters with similar sound or origin
source, though degree of overlap is low.

4. MODEL VARIATIONS
Model

5. MODEL PERFORMANCE METRIC
Val A

6. RESULTS FOR FINAL MODEL

7. ATTENTION AND LOSS

9. SUMMARY, FUTURE WORK
Hindi TTS with no hand-engineered features
and fast training that works reasonably well
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Voice 3: 2000-speaker neural text-to-speech.
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Poster Video shared at: https:/youtu.be/WwZAOH5Z304




