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Results:

*  We trained two YOLOV2 models, a “tiny” 15 layer
model and a “regular” 30 layer model

« The larger model performed significantly better than
the tiny model in class prediction and had a much
lower loss.

Input Image ‘Ground Truth‘ ‘ Our Model’s Output

We were able to achieve mAP for our best class
of 0.87, but our mAP over all classes was only

0.1336, which is less than desired performance.
We were able to identify clear next steps, and our
model architecture shows promise for stronger
performance with future work.

+  Our model does incredibly well at predicting tennis
courts, most likely because tennis courts are large
uniform objects which are quite distinct in color to
their surroundings

Our model does poorly on classes such as boats
and planes because these are small objects
clustered closely together. This occurs because
YOLO has strong spatial constraints on bounding
box predictions

We also performed poorly on classes which were
under-represented in our dataset such as
roundabouts and helicopters

Our model continued to improve in performance,
albeit slowly, after we stopped at 7000 iterations

Data Source, Cleaning and Transformation

We used the DOTA satellite aerial images object detection dataset!
+ Contains 1869 aerial satellite images ranging in size from 800 x
800 to 4000 x 4000
« There are 15 object classes labeled and boxed in each image
+ Some objects are labelled as difficult
+ Some appeared rarely, and some objects were very small
+ We removed the difficult examples and wrote code to crop and
flip images to improve accuracies on those classes where
this was an issue e.g. detecting boats
« The resulting images were shuffled and separated with a
60/20/20 train/dev/test split

Conclusion / Future Work

* YOLO is versatile, but not optimal for object
detection in satellite imagery

« Training for longer should improve performance
on this task

« Data augmentation to balance dataset should
improve performance on uncommon classes
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