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Introduction

In this project, we want to use deep learning approach to learn a trajectory planner for

autonomous vehicles in competitive scenarios. We use a feedforward network to learn

Approaches (cont'd)

we implemented a feedward network with
fully connect layers.
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iterations of non-linear optimization.
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Diagram for trajectory generation. Each iteration We replace the optimization problem by
solves a non-linear optimization problem. Solving neural network and learn the mapping from

one trajectory requires ~50ms, which is too slow for state to a trajectory.

real-time systems.
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activation functions - computation time is greatly reduced from

~50ms to 0.6ms.

The implemented supervised learning approach
suffers from “covariate shift” when interacting
with the environment. The challenge is that the
training dataset is from expert policy, whereas
the learned policy encounters state from a
different distribution.

For future, we want to explore DAGGER which
tackles this problem.




