Trajectory generation for autonomous cars in Competitive Scenarios Stanford

using Deep Neural Networks University
Mingyu Wang (mingyuw @stanford.edu)

' i N
Introduction

In this project, we want to use deep learning approach to learn a trajectory planner for

autonomous vehicles in competitive scenarios. We use a feedforward network to learn

Approaches (cont'd)

we implemented a feedward network with
fully connect layers.

. . . . hidden I:] f ivati
the planned trajectories. * RelU and Leaky ReLU activations are used L ReLlj\j‘;.‘:z:g:(eLU
” #iprat . 512 ¢ cakyRe
C) DeEaNAEr ik (5edones and compared. T FC 57 ReLU/LeiigRely
In the aataset. e controlled venicle ToaE H = = = 4 FC 512 ReLU / LeakyReLU
* Adam optimizer is pick which achieves Y
[On B} A take the state of both vehicles and P P . R 5 T fﬁ‘m 2‘3 - ECILU~f LeakyReLU
o W) = track geometry as input, outputs a better results then Stochastic Gradient able T: feedforward network structure
Do trajectory to win the racing game. Descent.
. J
(-) Performance and Analysis
Problem Formulation 4
[T J [ised . J To evaluate the performance of the trained neural network, we validate the learned
Dataset Description Supervised Learning policy on test dataset.
Thg d:f\tas'et isbgenzratgd from aI . V:‘Ie apply Zupervis?r?] Iearnin? approa:(:h on - loss on training set and test set - examples on test dataset. The black dotted
olptlrr.u:]atlonr;' ise tr.aJectozy'p anning | It e given Ia.1taset. e neural networ L =t lines are ground truth trajectories and red
algorithm which requires solving severa earns a policy : lines are learned trajectories.

iterations of non-linear optimization.

7 = argminE4[l(, s)],
InpUt: [XE!YE' vxe‘ Uye’ xo’yﬂ' v‘xo’ vyﬂ] L

which are positions and velocities of the where loss function is
two players. P 18 L,)
Output:[py, P2, - » P9, P10] (m,5) = m Z(W" -)
which are positional waypoints. -
4 J
r \
Approach
egostate \ A
| iter. iter. iter. ego command v ego command
1 2 N trajectory. trajectory
opponent grrnes
sute
Diagram for trajectory generation. Each iteration We replace the optimization problem by
solves a non-linear optimization problem. Solving neural network and learn the mapping from

one trajectory requires ~50ms, which is too slow for state to a trajectory.

real-time systems.

- training loss w/ different

|

E /\\
’ Sl AR RN RS,
| f
50 100 150 200 250 300 1
o

activation functions - computation time is greatly reduced from

~50ms to 0.6ms.

The implemented supervised learning approach
suffers from “covariate shift” when interacting
with the environment. The challenge is that the
training dataset is from expert policy, whereas
the learned policy encounters state from a
different distribution.

For future, we want to explore DAGGER which
tackles this problem.

