Crop Type Mapping with Multi-Temporal and Multi-Spatial Satellite Imagery

Rose Rustowicz, Robin Cheong, and Lijing Wang

Overview

Data

We combine remote sensing imagery with deep learning algorithms to
distinguish and map crop type from space.
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Motivation: Over 800 million people in the world are undernourished
and 80% of consumed food in the developing world comes from
smallholder farms [1]. Having a better understanding of smallholder
farms via crop type maps can provide unprecedented insight into food
systems and food security. We tie this motivation into the UN’s 2030
Sustainable Development Goals to contribute to goal three: zero hunger.

We focus in South Sudan and Ghana, Africa, where food security is of
particular importance. We encounter challenges with sparse data labels,
class imbalance, and high cloud cover
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Ghana Dataset Splits

Ground Truth

Method vs. State of the Art on Large Germany Data
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Results in Smallholder
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