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PREDICTING RESULTS — RED BLOOD CELL (RBC) SEGMEN

Motivation: Malaria affects 200 million humans. Hough Transform, Deep Learning Deep Learning Deep Learning
What we built used for automatic without with with
* We observe blood samples using low-resolution labeling, data augmentation, data augmentation,  data augmentation,
microscopes leads to many FN  without pixel weights  without pixel weights ~ with pixel weights
* We segment red blood cells (RBC) using deep learning
* We use the RBC segmentation to detect malaria parasites.
Results
* Red blood cells segmentation achieves a recall of 0.73.
* It improves malaria classification by an order of
magnitude: AUC of 99.998%
DATA Test loU: NA Test loU: 0.65 Test loU: 0.72 Test loU: 0.70
Red Blood Cell Segmentation Test Recall: NA Test Recall: 0.40 Test Recall: 0.55 Test Recall: 0.73
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APPLICATION — LEVERAGING OUR RED BLOOD CELL (RBC)

SEGMENTATION TO DETECT MALARIA PARASITES

Goal: We classify “malaria parasites vs
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820x820x3 cropped to 128x128x3
Labeling: Automatic with Hough Transform, very noisy
Contribution: Data augmentation on train data to reduce
noise in train labels
Splits: 12,000 train / 1,500 val / 1,500 test images - .
P / / & malaria vs platelet RBC segmentation e
MODELS Hypothesis: Malaria classification improves if

Architecture Search: U-Net [1], Fully Convolutional DenseNets [2] we add RBC segmentation as a feature
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Hyperparameter Tuning: learning rate, number of layers Result: Malaria classification improves byan ~ 2***”
order of magnitude using our RBC segmentation!
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i Al diagnosis using low-resolution, cheap microscopes REFERENCES
Contribution: Pixel weights to privilege accurate labels * It paves the way to detecting malaria in areas with (1] Ronneberger, et al. "U-net: Convolutional networks for
N H W constrained access to medical infrastructure and biomedical image segmentation.” ISBI 2015
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