Deep learning for relative stock performance prediction

Ruben Contesti, Sebastian Hurubaru, Jun Yan

Motivation

- · Stock movement prediction is always important.
- Over recent years several Deep learning methods have been applied.
- Unstructured data are also significantly correlated to the stock market

In this work we combine the Tweet data and some traditional finance data to predict the relative performance of Apple, using a deep neural network structure based on wavelet transform, stacked auto-encoder and LSTM/

Dataset

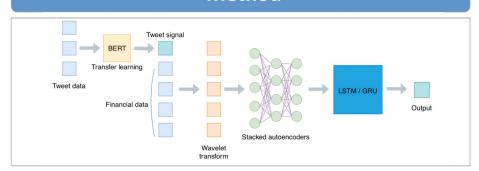
We have gathered a data set including daily data from 2009 to 2018. The data set containing 20 features in three categories:

- Historical trading data for Apple (APPL) and SPY, including the Open, High, Low, Close, Adj Close prices, relative performance and Volume.
- Macroeconomic indicators: interest rate and exchange rate. Effective Federal Funds Rate (DFF) and the US dollar index (DX-Y.NYB).
- Tweet data: Top tweets truncated to a 100 tweets a day.

Goal: predict the relative performance, defined as:

$$y_i = \frac{\mathsf{APPL}_{i+1}/\mathsf{APPL}_i}{\mathsf{SPY}_{i+1}/\mathsf{SPY}_i} - 1.$$

Method



Results

Model	RMSE	Theil U	MAPE	Kaggle score	Profitability
LSTM	0.016772	0.01274	1.677205	0.343304	10.18
Wavelet LSTM	0.016558	0.012582	1.655797	0.301474	12.57
SAE Wavelet LSTM	0.016128	0.01226	1.612825	0.347782	17.04
Tweets SAE Wavelet LSTM	0.016002	0.012164	1.600169	0.347783	17.06
Model	PMSE	Theil II	MAPE	Kaggle score	Profitability
Model GRU	RMSE 0.016241	Theil U	MAPE 1 624109	Kaggle score	Profitability
Model GRU Wayelet GRU	RMSE 0.016241 0.018551	Theil U 0.012372 0.014131	MAPE 1.624109 1.855082	Kaggle score 0.299805 0.3453428	Profitability 16.90 11.23
GRU	0.016241	0.012372	1.624109	0.299805	16.90

Conclusion

In general the best results are a combination of using wavelet transformation, Stacked Auto Encoders, Tweets sentiment and GRU/LSTM, with LSTM generating slightly better results than GRU.

Future work:

- Weigh each tweet by the importance of the tweeter account.
- Analyzing other unstructured data, such as news data.