

• U-Net:

CS230 Project: Nuclear Segmentation with Deep Learning

Antoine Bargé, abarge@stanford.edu

03/20/2019

Introduction

- The project is based on the ISBI 2012 Challenge and aims to perform segmentation of cell images .
- There are initially **30 512x512 images** both in the training and testing sets.
- The metric of success is accuracy of the classifier.

Data Augmentation

- Used **Image Data Generator** in Keras to generate new training images.
- Since the training set has a generated infinite size, the **number of steps per epoch** is fixed to 2000.

Models Results

Model	Optimizer	Learning Rate	Accuracy
U-Net	SGD	0.0001	0.885
U-Net	Adagrad	0.0001	0.878
U-Net	Adam	0.0001	0.967
U-Net	Adam	0.001	0.958
SegNet	SGD	0.0001	0.782
SegNet	Adam	0.0001	0.810
SegNet	Adam	0.001	0.814

Predictions: Left (U-Net), Right (SegNet)

Discussion

- Best score for a **U-Net** with **Adam** and a **learning rate of 0,0001.**
- Data augmentation is essential, otherwise scores are very low.
- SegNet misses the finer details, unlike U-Net, especially at the boundaries.
- U-Net is not very efficient when one class is **present in abundance** and there is some random noise.
- Future works:
 - Transfer Learning
 - Tiramisu
 - U-SegNet (combinaison of U-Net and SegNet).

References

- Ronneberger, Fischer, Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation.
- Badrinarayanan, Kendall, Cipolla: Seg Net, a deep convolutional encoder decoder architecture for image segmentation.
- Ciresan, Gambardella: Deep neural networks segment neuronal membranes.

nted by **MegaPrint Inc.** www.postersession.co

