@ Stanford Computer “Vision”: A Deep-Learning-Based Approach to Detecting Diabetic

University Retinopathy

Pranav Upadhyayula, Lauren Yang, and Sushil Upadhyayula
{pranavu, lauren11, sushilu}@stanford.edu

Overview Model Discussion

The Problem Evaluation Metrics
+ Diabetic Retinopathy (DR) affects 93 million people, most * Baseline: 67.4% sensitivity, 92.5% specificity, 70.6% macro accuracy.
of whom aren’t diagnosed until late stage. 6 Blockil R . DenssiBlock2 fl N enss Blockcy ;! Softmax Cross-Entropy } « DenseNet: 87.6% sensitivity, 96.9% specificity, 87.6% macro accuracy.
* Family eye doctors don’t receive training in detecting DR. Hld @. Hild @ € = « Confusion matrix: heavy on diagonals = high true positive rate.
* Specialized ophthalmologists still go through a very — o & ) Early-Stage Detection
izl & tediatisiprocess 1o testior DR. [1[2] = Xy e CE ==} tiloy(f(s)) - DenseNet is very good at classifying Stages 0-2 (No DR, Slight DR).
?M(J::glg::seNet CNN with Softmax output layer to classify * DenseNet is based on the finding that CNNs are more accurate and efficient if the‘v contain « Accuracy > 75% for Stages 0-2; high sensitivity & specificity.
images of the eye into 5 stages of DR. ShO_l’tET connections between layers. [3] ‘ i A « Early detection is most challenging to ophthalmologists, so tremendous
+ Use Class Activation Maps (CAMs) to provide * While tr?dltlonal CNNs only have connections l)let\fveen adjacent Iayers, DenseNet splits the potential for computer-aided diagnosis, especially results visualization.
interpretability & highlight potential problem areas on CNN up into Dense Blocks, where every layer within a dense block is connected to every Late-Stage Detection

other layer within that block. [4] + DenseNet has some difficulty with Stages 3-4, likely due to class imbalance.

image. " .
+ This reduces the number of parameters by encouraging feature reuse, and solves the : f 5 y
* Results sh ignific in i ifyil y-: s Y ! * However, late-stage DR is much easier to manually/visually diagnose, so
esults show significant prowess in identifying early-stage vanishing gradient problem. [5] s 8¢ RIS ly/ Y g !
DR. specialists can use their judgement to make an accurate diagnosis.

DenseNet-121: 121 batch normalization layers, 120 convolutional layers, 121 activation layers,

Real-World Clinical Application . N Interpretability
¢ Interviews with Palo Alto-based optometrists reveal that S8concatenation layers, &1 global average poaling/layer. i isualizati
b N i IP iyl « We feed this into a Softmax output layer with 5 classes. @ CAMs provide a heatmap wsuallza_tlon of the most useful fe_atures_.
is would especially help at the low level to be + Mini-Batch Gradient Descent (batch size = 64) Clinicians can use CAMs for expedited and more accurate diagnosis.

embedded within annual check-ups.

Estimated 15 minute time savings per patient for
specialized ophthalmologists. Resu Its Futu re Work

Comparison of Results Model
* Trai : hi 44K i t
/Featu res Sensitivity | Specificity | Train Act Test Acc. C;ar;n z?ar;l;:zlda;:lev:e ave more images, but need more
(n=8000) | (n=1000) P pOwer,
Dataset

* Tune the # of frozen layers as a hyperparameter, so that trained weights

« Kaggle Dataset Baseline 0.674 0.925 0.979 0.702 are more specialized to our eye images

« 5,000 RBG images (labeled with true class) DenseNet Class 0 0.938 0.912 0.989 0.938 Computer-Aided Diagnosis

+ 80/10/10 train/dev/test split DenseNet Class 1 0.857 0.988 0.964 0.835 « Continue current discussions and collaborations with doctors to gauge how
Pre-processing DenseNet Class 2 0.640 0.921 0.915 0.768 our CNN with CAM visualization could help them improve DR screening.

* Classimbalance (.see below_) ) Lo DenseNet Class 3 0346 0.983 0723 0321 . ?pgcialists told us they have difficulty detecting DR at early stages, and

+ Images are too high resolution, shrink to 1% of size. 5 e 5 l5ee TG B indicated that this tool could help greatly twofold .

Data Augmentation ensenet Llass . : . . « High-profile companies currently working on such products with doctors.

« To simulate real world imperfections and generate more Overall (micro avg) 0.876 0.969 0.972 0.876 .

Focus on improving CAM interpretability for maximum real-world utility.

images, used:
* Gaussian blur (random o between 1.0 and 2.0)
* Increase in contrast
« Color shifting + Random Brightening/Darkening

*In accordance with literature, sensitivity are used rather than recall and precision.
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