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Objective

Goal: Apply deep reinforcement learning
techniques to active flow control

Testcase: Suppress vortex shedding behind a 2D

circular cylinder using rotation

Data Generation and Simulation

Y-Velocity at iteration 0

Created OpenAl gym
environment with PyFRM fluid =
simulator \
States: 256x128x4 flow-field
Actions: Cylinder rotation
(continuous or discrete)
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Algorithm and Architecture

Algorithms: DQN!2, PPOEI
Networks: MLP, CNN (pictured)
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Results

History Comparison
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Y-Velocity at Iteration 300
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* Trained with multiple ¢
architectures and algorithms
* DQN+CNN was the only .

successful configuration

Further Analysis
Saliency map Saliency Map
demonstrates 100

network focus for
first action decision
Near-wake region is
most important 250
Favors upper wake 100
region when deciding
to perform positive
rotation

250

RL approach outperforms existing .
proportional control policy

Control approach is initially

similar then qualitatively different

Flow field snapshot after RL
policy was applied
demonstrates successful
suppression

Future Work

* Use a different reward function such as the drag
or vorticity of the flow field

* Use transfer learning from a linearization
network!! to accelerate the feature extraction
process of the learning.

* Try other control techniques such as jets
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