

Evaluating Strike-Slip Fault (SSF) Evolution with 2D CNN: Identifying the Geohazard Zones?

Laainam (Best) Chaipornkaew, bestc@stanford.edu

CS 230 Win 2019

1a. What's strike-slip fault? Lateral displacement induces deformation

- · Claybox analogs SSF development at surface due to displacement at depth [1].
- Stages of SSF (0→3) intensify with amount of displacements of basal metal plate.
 Attractive dataset: records deformation evolution from the beginning to the end.

- SSF example: San Andreas and other
- faults along USA's west coast
 Access to only faults' current stage; yet
 they are spatially heterogenous
 Applicable to real-world data: submarine
- topography, terrestrial LiDAR

 $\Delta v (slip)$

1b. How to infer 'maturity' of these faults? Model's Input & Output

Goal: End-to-End Workflow that allow prediction of fault stage from a single 'current-day' surface data. Given a trained model which has seen all fault stages from Claybox experiments.

Extracted 2D maps, shear strain rate, Au, and Av, are the

Output: A prediction of fault 'maturity' stage

Regression problem to predict a single-digit float that best describe stage of SSF.

Shear Strain Rate Input: A single 2D-image (3-channals), representing fault's geometry and slips Δu (slip) products of time-series images (~250 images/experiment) [1]

2. Baseline Model of SSF Stage Prediction

- There is no existing ML, DL study on fault stage prediction or on this dataset.
- Simple linear regression and best performing ridge linear regression with tuned regularization are established for baseline performance.
- regularization are established for baseline performance.
 Linear Regression is extremely overfit to training dataset (overdetermined system 128x32x3 features for ~6,000 training samples).
 Slightly improved generalization with regularization. But model does not perform well

	Regularization	Train MSE	Dev-Test MSE	Dev-Test Bracket Accuracy
Linear Regression	None	0.00	0.40	53%
Ridge Regression	$\alpha = 0.8$	0.03	0.04	61%

Idation Willim ter Adult of Control Co

3. Generating and Preprocessing Data Labeling Strategy • [1] defines 4 discrete fault stages (0,1,2,3). Alternatively, I use continuous labelling technique, only label near transition + midway, then interpolate the rest Experiment choices: 3 experiments are ensembled with speed =0.5cm/min, and both deep and shallow fault depth

- Raw physical values (.mat) of shear strain, Δu , Δv are (1) normalized for DataGenerator (and also (2) scaled for data labeling).
- Clipped raw image to 128x32 subimages (~25% overlap), ~7,500 subimages (c,u,v), ~2,500 stacked images/experiment.
- Split {Train: Dev: Test} = {0.85: 0.10: 0.05}
- Image Augmentation: I experimented and found augmentation combination that best generalizes SSF geometry related to input size and characters: soom_range=0.1, horizontal and vertical_shift=0.2, horizontal and vertical_shift=0.2, horizontal and vertical flips, all are randomly applied using keras.ImageGenerator

4. 2D-Neural Network Architectures and Hyperparameters

Both shallow and deeper CNNs (added dilation) are explored

- MSE is a reasonable metrics for regression problem

 'Bracket Loss' has MSE with extra penalization
- to predictions that fall outside their characteristic groups (g0, g1,g2, g3)

 Co-efficient terms or choices of adding alone of
- adding with square are tuned during training.

The CNNs models are able to predict fault maturation stages with > 86% and 89%

- accuracy in shallower and deeper models, a significant improvement from baseline. The deeper CNNS outperforms shallow CNNs, due to image augmentation designed to scaled and shift faults away from center & dilation rate applied to help handle it GRAD_CAM Attention [2, 3] helped identify models during development that did not look at the faults to make predictions.
- GRAD_CAM Attention will be important for future architecture choices. Though, deep CNNs perform better, the shallower CNNs' attention maps are more interpretable.

- Better understand how CNNs make prediction. Go deeper into attention map, hopefully to identify empirical relationships for fault deformations
- Expand to detection and localization () problems based on magnitude of displacement which will remove the subjective labeling stage from geologists.
- Apply model to real-world example with appropriate dataset.