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. Claybox analogs SSF development at surface due to displacement at depth [1].

« Stages of SSF (0>3) intensify with amount of displacements of basal metal plate.

« Attractive dataset: records deformation evolution from the beginning to the end.
- ; =

« SSF example: San Andreas and other
faults along USA's west coast

« Access to only faults’ current stage; yet
they are spatially heterogenous

« Applicable to real-world data: submarine |
topography, terrestrial LIDAR

Goal: End-to-End Workflow that allow prediction of fault stage
from a single ‘current-day’ surface data. Given a trained model,

which has seen all fault stages from Claybox experiments. Shear Strain Rate

Input: A single 2D-image (3-channals), representing fault’s

geometry and slips

« Extracted 2D maps, shear strain rate, Au, and Av, are the
products of time-series images (~250 images/experiment) [1]]

Output: A prediction of fault ‘maturity’ stage
« Regression problem to predict a single-digit float that best
describe stage of SSF.
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2. Baseline Model of SSF Stage Prediction

« There is no existing ML, DL study on fault stage prediction or on this dataset.

« Simple linear regression and best performing ridge linear regression with tuned
regularization are established for baseline performance.

« Linear Regression is extremely overfit to training dataset (overdetermined system
128x32x3 features for ~6,000 training samples).

« Slightly improved generalization with regularization. But model does not perform well
on dev-test sets

enerating and Preprocessing Data

Labeling Strategy

« [1] defines 4 discrete fault stages (0,1,2,3).

« Alternatively, | use continuous labelling technique, only
label near transition + midway, then interpolate the rest )

Stacked input data

Experiment choices: 3 experiments are ensembled with
criteria on their distributed shear zone (1.5cm) B.C., motor
speed =0.5cm/min, and both deep and shallow fault depth.

Data Pipeline:

« Raw physical values (.mat) of shear strain, Au, Av are (1) normalized for
DataGenerator (and also (2) scaled for data labeling).

« Clipped raw image to 128x32 subimages (~25% overlap), ~7,500
subimages (c,u,v), ~2,500 stacked images/experiment.

« Split {Train: Dev: Test} = {0.85: 0.10: 0.05}

« Image Augmentation: | experimented and found augmentation
combination that best generalizes SSF geometry related to input size and
characters: zoom_range=0.1, horizontal and vertical_shift=0.2, horizontal
and vertical flips, all are randomly applied using keras.ImageGenerator

Train Dev-Test Dev-Test
MSE MSE Bracket Accuracy
Linear Regression None 0.00 0.40 53%
Ridge Regression =08 003 0.04 61%

4. 2D-Neural Network Architectures and Hyperparamet:
+Both shallow and deeper CNNs (added dilation) are explored.

- ; Shallow: x2

 Deeper : x4 with dilation
{ (Conv2D + dilation )
| (_BatchNormalization )

«Hyperparameters explored include:
*number of layers, NC_filter, learning
rate, *dilation_rate, BN_momentum,
*scaling of image augmentation
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L =mse + (g0)?+(g1)?+(g2)?+g3

y<1 g0 =max(0,5 — 1)

1<y<15 :gl=max(max(l— $0),max(0,§ — 15))

15 <y <3.0 : g2 = max(max(L5 — $,0), max(0, § — 3.0))

y=3 : g3 =max (0,3 — )

« MSE is a reasonable metrics for regression
problem

« ‘Bracket Loss’ has MSE with extra penalization
to predictions that fall outside their
characteristic groups (g0, g1,g2, g3)

« Co-efficient terms or choices of adding alone or
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adding with square are tuned during training.

2D-CNN Shallower:

Tested Models Params MSE Bracket Loss | Bracket Accuracy

Train ‘ Test | Train | Test | Train Test
2D CNN : shallower AdamOptimizer, 0.038 | 0.024 | 0.029 | 0.048 | 81.19% | 85.82%

Braciet Lose Lr =503
2D CNN : deeper Epoch=50, 0.031 | 0.022 | 0.036 | 0.026 | 87.55% | 89.80
Dilation + Augmentation + Bracket Loss | Batch-size = 32
2D CNN : deeper mementum = 0.8 7,627 0.020 | 0.051 | 0.028 | 74.60% | 67.55%
Dilation + Augmentation + MSE
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8. Discussion

The CNNs models are able to predict fault maturation stages with > 86% and 89%
accuracy in shallower and deeper models, a significant improvement from baseline.
The deeper CNNS outperforms shallow CNNs, due to image augmentation designed to
scaled and shift faults away from center & dilation_rate applied to help handle it.
GRAD_CAM Attention [2, 3] helped identify models during development that did not
look at the faults to make predictions.

GRAD_CAM Attention will be important for future architecture choices. Though, deeper
CNNs perform better, the shallower CNNs’ attention maps are more interpretable.

Future Work

Better understand how CNNs make prediction. Go deeper into attention map,
hopefully to identify empirical relationships for fault deformations

Expand to detection and localization () problems based on magnitude of displacement,
which will remove the subjective labeling stage from geologists.

Apply model to real-world example with appropriate dataset.




