

Piano Music Transcription Using Neural Networks

Zehui Wang (wzehui@Stanford.edu)

Stanford ENGINEERING Computer Science

Introduction

We aim to solve piano music transcription problem. Our model takes an input of a WAV file and translates into a MIDI file that contains information of the duration and the pitch of each note. We preprocess the audio file with CQT transform and then use a CNN architecture to predict the music notes.

Dataset

Audio files: WAV files of piano music

Label files: the aligned MIDI files (duration and pitch) Training vs. dev vs. test: 19.37h, 5.01h, 4.04h

Data preprocessing: Constant Q transform (7 octaves, 36 bins, hope size of 512, 252 dim features)

Output: multi-hot binary vector of length 88 (88 keys on keyboard)

Postprocessing: convert numpy arrays to MIDI

Method

Baseline: a deep neural network proposed in [1]. Input (252) – [dense (256) – ReLU] * 3 – dense (88) – sigmoid

CNN: takes an input of a context window of frames, of which the center is the target frame. Zero paddings are used in the beginning and the end of the input.

target frame Conv 2D Batch Normalization ReLU Poling X2 Dense ReLU Pitch of the target frame

Loss function: mean squared error (MSE) & binary cross entropy (average over all classes)

$$Loss_{CE} = \frac{1}{n} \sum_{i=1}^{n} (-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i))$$

Model parameters: Context window size: 7; Conv2D kernel size: (25, 5) and (5,3); max pooling size: (3,1); dropout 0.5 in all layers; L2 0.0001 in dense layers; Adam optimizer learning rate 0.0001

Ex	per	imen	tal	Resu	ılts

Model	Loss Function	Parameter Searching*	F-measure	Accuracy
Baseline	MSE		0.6393	0.4698
Baseline	MSE	dropout 0.3	0.6398	0.4703
Baseline	MSE	Hidden units 125	0.6243	0.4538
CNN	MSE		0.6527	0.4850
CNN	MSE	Dropout 0.2	0.3812	0.2355
CNN	MSE	Learning rate 0.001	0	-
CNN	MSE	L2 = 0.00005	0.6368	0.4671
CNN	MSE	L2 = 0	0.4172	0.2636
CNN	MSE	Window size = 9	0.5964	0.4249
CNN	CE		0.6328	0.4628
CNN	CE	L2 = 0.00005	0.5653	0.3940
CNN	CE	L2 = 0	0	-

*CNN Parameters listed in this column are compared to those described in Section Model; baseline parameters are compared to the model in [1].

Evaluation Metrics: Precision(P) = TP/(TP+FP), Recall(R)=TP/(TP+FN), F-measure(F)=2PR/(P+R). TP,FP,FN are computed at each time frame. The average is then computed across the entire dataset. Evaluation methods are adopted from [2].

Analysis

Regularization: a small value of L2 regularization can greatly reduce overfitting; cross entropy loss is more sensible than MSE in terms of L2 parameters. **Error analysis**: higher error rate when predicting

notes that last a long time. The problem might be that long notes appear less often. **Data mismatch**: overfitting issue (F-measure of

Data mismatch: overfitting issue (F-measure of baseline on training data is 0.8656). Use real piano music as dev set and test set, and synthesizers as training set.

Future Work

- Fine tuning CNN architectures and parameters
- · Explore RNN structures and compare with CNN
- · Diving into data mismatch problem

Reference

[1] Diego Gonzalez Morin. Deep neural networks for piano music transcription. https://github.com/diegomorin8/Deep-Neural-Networks-for-Piano-Music-

Transcription

[2] Sigtia, Siddharth, Emmanouil Benetos, and Simon Dixon. "An end-to-end neural network for polyphonic piano music transcription." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.5 (2016): 927-939.

Stanford CS230, Final Project Poster, Winter 2019