

Animal Adoptability Analysis

Predict animal adoption speed from pet profiles Hermann Qiu (hg2128), Xu Zhao (pglory), Chun Kit Chan (cckit) Department of Computer Science, Stanford University

Motivation

- Inspired by a recent kaggle challenge to predict pet adoption speed from pet profiles. The long-term goal of the project is to guide shelters and rescues on improving their pet profiles' appeal, reducing animal suffering and euthanization.
- The input is the pet profile, including structured data columns and image data; The output is the adoption speed categorized from 0 to 4 (0 being the fastest and 4 being the slowest).
- We use pre-trained ResNet to extract image features, concatenate with structured features at certain stage, and feed the combined vectors to another network.

Dataset

- 14993 pet profiles with labels from 0 to 4 indicating the adoption speed (the smaller, the faster the pet is adopted).
- Structured data: 24 columns, including numerical feature, nominal feature and ordinal feature (11 out of 24 are shown on the right).
- Image data: 58311 pet images One pet profile can have more than one photo, and one photo can include multiple pets.

Feature Engineering

- Structured data:
- Keep numerical features as what they are (age, Adoption Fee, Number of photos, etc)
- convert nominal data and ordinal data into One-Hot Vectors
- In this way, every sample has a feature vector size of 5970 derived from structured data
- Image data:
 - Pick and scale the first image for every sample profile, for those that don't have a image, we will insert a dummy black image. Preprocessed into uniform 224*224*3 array.
 - Transfer learning: use ResNet50 to process the images
- Structured data + Image data:
- In a simple saying, at certain stage of the network, we will merge two set of feature data together into one

Models, Results, Discussion

- Transfer Learning (image): Freeze/unfreeze certain layers, concatenate the last few layers
- Image Augmentation
- Variation of dense layers/number of units
- When to merge structured and image feature: Early merge vs. Late merge
- Loss Function: MSE vs. Cross-Entropy Loss vs. QWKappa Loss
- Hyperparameters search

	Network	Loss Function		QW-Kapp a - Dev
Structure Data	I- layer NN	Cross-entro py	30.40%	*N/A
		MSE	27.00%	*N/A
Image Data	Pre-trained ResNet + 2-layer NN	Cross-entro py	33.9%	*N/A
		MSE	25.90%	*N/A
Structure Data	6- layer NN	Cross-entro py	32.13%	24.56%
		QW-Kappa Loss	39.00%	42.00%
Structure Data + Image Data	Step1:Pre-trained ResNet for image feature extraction, then feed into 2-layer NN; Step2: Feed structure data to a 6-layer NN; Step3: Concatenate the results from 1 and 2, then run through softmax layer	Cross-entro py	40.40%	38.98%
		QW-Kappa Loss	43.60%	48.01%

Error Analysis

- Rescuer Effect: Star rescuer vs single pet rescuer
- Quantity effect: each profile can include multiple pets
- Information in description not able to use yet - personality, reason for relinquishment.
- Profile quality: Low quality→Low prediction.

Compare with other teams

Current Kaggle Public Leaderboard top 0.4920 vs. Our highest of 0.4801

Future Work and Citations

- Clean up description text data, translate non-English sentences into English, and extract important information like 'reason for pet relinquishment' -- "Break the 0.5"
- Enrich the infrastructure and improve the running efficiency, to allow more users seamless feeding in their own data to see the results

[1] Liwei Wang, Yin Li, Jing Huang, Svetlana Lazebnik (2018). "Learning Two-Branch Neural Networks for Image-Text Matching Tasks" [2] Classifying e-commerce products based on images and text.
[3] Adopter-dog interactions at the shelter: Behavioral and contextual predictors of adoption Pease find the full list in the final report.

Animal Adoptability Analysis

Predict animal adoption speed from pet profiles Hermann Qiu (hq2128), Xu Zhao (pglory), Chun Kit Chan (cckit) Department of Computer Science, Stanford University

Link to Video:

https://youtu.be/QP6BnCuSXSk