Sentiment Analysis of Company Earnings Conference Calls with

Long Short-Term Memory
Shafiq K. Ebrahim [ebrahims@stanford.edu]

Abstract

We examine the sentiment expressed during quarterly
company earnings conference calls. Most sentiment analysis
studies in the finance and accounting literature use
techniques that ignore the order of words as well as the
context of the information. Sequence modeling based on
deep neural networks offer us the opportunity to capture the
context in a more meaningful way. We compare the
performance of the long short-term memory model (LSTM)
with those of standard machine learning techniques. Our
LSTM model struggles to outperform shallow machine
learning models which suggests that a different deep
learning architecture might be better suited to analyzing
feature sets consisting of extremely long sequences of words.

Data

Quarterly earnings conference call transcripts from
S&P Capital IQ for the period from January 2008 to
December 2017.

Focus only on U.S. companies belonging to the Russell
1000 Index.

Extract all the components of text corresponding to
questions by analysts and combine them together for
each call. We do the same for all the responses by
management.

36,174 examples. Average of 3,718 words each for
answers and 1,466 words each for questions.

Abnormal Stock Returns

Classification of the sentiment expressed by
management or analysts is difficult because ground
truth labels are not readily available.

Manual labeling is not practical with a large data set
and is prone to biases.

Instead, we compute the conference call period
return of each stock in excess of the Russell 1000
Index over a four-day window beginning on the date
of the earnings conference call.

We label each earnings conference call as positive
or negative based on the sign of this abnormal
return.

Models

P g=

We use a long short-term memory model (LSTM)
which is a type of recurrent neural network
(RNN).

Inputs are words from the conference call
transcript. We use the pre-trained 100-dimension
GloVe embeddings (400K vocabulary) without any
additional fine-tuning (Pennington et al. (2014)).
Single LSTM hidden layer with 64 units and a
dropout rate of 0.8 followed by a dense layer with
sigmoid activation function.

We optimize the network (binary cross-entropy
loss function) using the Adam algorithm with a
learning rate of 0.0001 and a batch size of 32.
Stop training after 30 epochs because of
overfitting.

We compare the results of our LSTM with three
models — a random guess baseline based on the
training set classification probability and two
standard machine learning algorithms — naive
Bayes and support vector machines.

We split our dataset into training, validation, and
test sets (64%/16%/20%). We tune our LSTM
based on results from the validation set.

We tune the hyperparameters of the standard
machine learning algorithms with 5-fold time-
series cross-validation.

Results
Answers Questions
Composent | Traming set Test set | Training st 'Tst set
Haseline 0500 0397 0306 s |
Nalve Bayes 0.543 0.530 0574 0545
SVM 0577 0sg 0612 asm
LST™ 0.531 0.495 0.503 0501
Boid ngums are highest valses in each column.
0530 Model sccuracy Model loss

Test
0s2s Test

07200 — 1ram
ons
os20

o070
os15

§ams
os10 /

as0s I_ﬂ
L.

B B B3 G 3)

sccuracy

Discussion and Future Work

Training the LSTM model proved to be very challenging. The network appeared to be underfitting the
data initially, so we added capacity by increasing the number of hidden layers from one to three and the
number of hidden units up to 256. The model had difficulty achieving training and validation set
accuracy above 50%.

We hypothesized that the input sequences may have been too long for the network to process
effectively (maximum length of over 18,000 words!), so we applied a cap of 2,500 words for each
document.

Then, we were experienced overfitting: the training set accuracy increased to about 70%, but the
validation set accuracy fell back to 50% after initially increasing to about 52%.

Using L2 regularization and trying the gated recurrent unit (GRU) architecture didn’t help.

Perhaps an alternative architecture such as a convolutional neural network (CNN) or the training of even
lower dimensional word embeddings based on our own corpus might yield more promising results.

References

Pennington, J., Socher, R. & Manning, C. (2014) Glove: Global Vectors for Word Representation. EMNLP 14,
1532-1543.

