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Problem description

This project seeks to classify atoms in crystalline or interface
states based on geometric parameters calculated during
molecular dynamics simulations. Classification is of critical
importance when determining the mechanism(s) by which
atoms transition between the two states (Fig. 1a). [1-5]

A model trained on silicon data is applied to water data to
determine feasibility of transfer learning. The two have
similar underlying geometric bonding structures. (Fig. 1b)
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Fig. 1a Melt and interface [1]  Fig. 1b Ambient structures

Data acquisition and preprocessing

This project utilizes 500,000-atom datasets from molecular
dynamics simulations on silicon and water. Each atom has
defined local structure based on spherical harmonics, which
relates its position and classification (crystal y=1 or interface
y=0) to surrounding atoms. This yields 21 features and 1
label per atom based on radial structure functions.

Implemented network architectures

Iterating through several network architecture parameters
showed that f1 and precision scores are maximized with a
10-layer (L = 10) deep neural network with 100 neurons per
layer (n'= 100) and dropout regulation (Fig. 2).

Model Precision Recall f1 Accuracy
Linear SVM, sample weight = 1:1 0.0 0.0 2 80%
Linear SVM, sample weight = 3:1 0.42 0.80 0.55 74%

NN, 1 layer (100 neurons), sample 0.46 0.74 0.57 78%
weight = 1:1

NN, 10 layers (100 neurons), sample  0.47 0.70 0.56 78%
weight = 1:1

NN, 10 layers (100 neurons) + 0.50 0.68 0.57 80%

dropout, sample weight = 1:1
Fig. 2 Iterating architectures and several hyperparameters

For the selected 10-layer neural
network with 100 neurons per
layer, the cost during training
monotonically decreases and
stabilizes by 100 epochs (Fig. 3).

Fig. 3 Cost vs. training epoch

Results and discussion

Hyperparameter tuning on the 10-layer neural network with
100 neurons per layer using the silicon dataset revealed
optimal thresholds and the relationship between the
precision and recall for both train and test sets (Fig. 4).

Fig. 4 Hyperparameter tuning and results on silicon data

Transfer Learning

Freezing up to 5 Si-trained
layers of the network does
not achieve comparable
performance as fully re-
training the model on
water data. (Fig. 5)
Initializing with Si-trained
weights does accelerate
training (Fig. 6).
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Fig. 5 Transfer learning to H,0
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Future work Fig. 6 Weight initialization for H,0

Apply NN classifier to new materials (i.e germanium, tin)
Incorporate time dependence into model parameters
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