o o o o . Cindy Jian
Predicting Bitcoin Price oo

Department of Computer Science, Stanford University

Tl‘ends Orien Zeng Lucas Lin

ozeng@stanford.edu lucaslin@stanford.edu

Department of Computer Science, Stanford University =~ Department of Computer Science, Stanford University

Overview  Resuts

Goal: Predict whether bitcoin prices will go up or down based on a snippet of Bitcoin

Model Accuracy Precision Recall F1

EEREITaRgs , s Baseline CNN 60.8% 66.7% 72.82% 64.78%
Dataset: Time series data of transactions on a Bitcoin Coinbase exchange
Output: Binary classification to 1 (price increases) or O (price decreases). LSTM #1 69.4% 74.24% 63.64% 67.22%
Approach: 3-component model with a Fourier transform, stacked autoencoder, and LSTM. LSTM #2 69.8% 70.88% 65.44% 67.82%

1. Fourier transform: Extract frequency content and denoise input

2. Autoencoder: Compress Fourier output and extract high-level features LSTM #1: 3.2e-5 learning rate, no dropout, 200 epochs and 1layer

3. LSTM: Input the sequence of encoded outputs for classification LSTM #2: 1.3e-4 learning rate, no dropout, 100 epochs and 2 layers

Original Data Encoded output Reconstructed data
Kaggle: Bitcoin Historical Data Split dataset 70%/15%/15%

® 4 years in 1-minute increments e Problem: NaN’s in dataset e Small dataset
(around 2 million rows) o Consists of around 5.4% of the
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Architecture

Limitations

o Unlabeled regions in dataset

Bitcoin Weighted Price
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