# **Predicting Bitcoin Price Trends**

Department of Computer Science, Stanford University

Orien Zeng

Cindy Jiang

cindyj@stanford.edu

Department of Computer Science, Stanford University

Lucas Lin

Department of Computer Science, Stanford University

# Overview

Goal: Predict whether bitcoin prices will go up or down based on a snippet of Bitcoin trading history.

Dataset: Time series data of transactions on a Bitcoin Coinbase exchange

Output: Binary classification to 1 (price increases) or 0 (price decreases).

Approach: 3-component model with a Fourier transform, stacked autoencoder, and LSTM.

- 1. Fourier transform: Extract frequency content and denoise input
- 2. Autoencoder: Compress Fourier output and extract high-level features
- 3. LSTM: Input the sequence of encoded outputs for classification

# Results

| Model        | Accuracy | Precision | Recall | F1     |
|--------------|----------|-----------|--------|--------|
| Baseline CNN | 60.8%    | 66.7%     | 72.82% | 64.78% |
| LSTM #1      | 69.4%    | 74.24%    | 63.64% | 67.22% |
| LSTM #2      | 69.8%    | 70.88%    | 65.44% | 67.82% |

LSTM #1: 3.2e-5 learning rate, no dropout, 200 epochs and 1 layer LSTM #2: 1.3e-4 learning rate, no dropout, 100 epochs and 2 layers

# **Dataset**

Kaggle: Bitcoin Historical Data

- 4 years in 1-minute increments (around 2 million rows)
- 7 features
  - o Weighted Price
  - Volume



# **Preprocessing**

Split dataset 70%/15%/15%

- Problem: NaN's in dataset
  - o Consists of around 5.4% of the entire dataset
  - Discarded or interpolated NaN's based on density of "good" points around the NaNs

# Stacked Autoencode Original Data Encoded output Reconstructed data

The layers in the box shown above represent the layers currently being trained in the model

# **Discussion**

### Limitations

- Small dataset
- Unlabeled regions in dataset

- Profitability analysis
- Wavelet vs fourier
- Input gradient heatmap

# **Architecture**

### Fourier transform

- · Time series to frequency
- Rescale channels to (-1, 1)
- Phase info as angle in the complex plane

# 3-layer stacked Autoencoder

- Layers trained in series
- Encoding loss is separate for each layer

# Stack 10 timesteps

- Hyperparameters chosen via grid
- Fully connected layer in output with sigmoid activation

Reference

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one, 12(7), e0180944.