Introduction ata Augmentation

-- Cropping of top and bottom border to input only the road image

Context:Autonomous Vehicles are the next biggest challenges in Al and ML
Challenge: Learn to output steering angle to have the vehicle stay within
the lane via supervised learning on driving examples.

Approach:

- Obtained driving data through Udacity’s Self Driving Vehicle Simulator

- Several data augmentation techniques to overcome bias in the dataset

- Implemented, trained and tuned Convolutional Neural Network

- Acceptable error and driving performance given the relatively small
number of data
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Data Structure
- 17,350 images of the road (320px x160px) from the left, center and
the right side of the vehicle

- .csv file of image locations, steering angle, applied brakes and throttle,
and vehicle speed was input to the neural net
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- Biased data; most of our driving examples are along the straight lane.

Overcame by augmenting driving examples along the curvy roads.
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Random rotation + hue change

Random crop + change in brightness

Gaussian noise (added as a layer)

-Images were split into YUV channels as inputs to the neural net

Model is trained based on MSE error of steering angle prediction, i,e,.
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Output: vehicle control
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Agent can run autonomously
without human interaction

86% of time

- Agent struggles more when tested in completely different environment
(‘challenge’ tracks in the simulator)

Discussion

- Relatively small number of images (17k datapoints with random
augmentation at each epoch) was enough to fully train the CNN with the
acceptable MSE error
- Relatively simple architecture and certainly less complicated design than
conventional component-by-component design approach
- Simulation setup greatly simplifies the problem and limits validation

- Lower vehicle speed

- No other vehicles on the road

- Relatively homogeneous environment
- Lower performance on ‘challenge’ tracks in the simulator indicate that the
model potentially has issues with generalization
- MSE error is not representative of how safe the output steering angle is

- Reduce the number of CNN parameters

- Use of more expressive loss functions (total variation) to reduce jerkiness
in steering output

- Input the series of camera frames as the trainitng example instead of a
single YUV channels of camera images using RNN
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