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Motivation

- Ng: “Al is the new electricity” ...
- CS230 and this project inspired us to pthfsh ,},,
article for Banks to adopt Al in a premierjoutna
- Our project is to help banks, malls or & s».“
identify people, detect face and classify their:
gender / age.
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Architecture / Methods (3 models — main takeaways)

! #1 - YOLO v2 for Person Id: A

|| 1) Tiny YOLO uses 9 conv and 6 pool layers .
2) We modified the last Conv and Regions lay
to have 2 classes (person and pets). g
3) Achieved max 0.47% accuracy

Related Work

- Redmon et al.’s YOLO real-time object detection network
achieves high performance with prediction of bounding
box and class probabilities in boxes.

- Hassner et. al.’s model for gender / age classification and
uses 3 deep CNN for face shape, viewpoint and
expressions

We use 3 models:

#1 YOLO v2/9000 for identification

#2 YOLO v3 for face detection

#3 CNN for gender/age classification

#2 - YOLO v3 for Face Detection:
1) Divides the input image into small regions and

2) YOLOV3 has increased number of layers to
3) Due to improvements in productivity features
;\7 “like b-box, we used Alexab’s version of YOLOV3.
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#3 Age / Gender:

1) Initially, a shallow layer model (Levi) which has
70+/80+ percent accuracy) is used.

2) We then adopted transfer learning baseJ Ppl
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Data Strategy

- Our bank pictures of 500 is split into
Training (mixed with larger set), Validation Our Dataset ~400
and Test as shown. Our 3 models tweaked
the annotated files to suit the model

to 500 pictures
For Training Data, we used

- #1 PASCAL VOC for YOLO v2

- #2 WIDERFace for YOLO v3

- #3 Adience for Age/Gender
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predicts the b-boxes as well as the probabiliti
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#2 YOLOV3:
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Results

#1 - YOLO v2: As shown below, prediction is less accurate in
totally different Test sets (ex. school kids in classical dance).

See b-box on
a picture of
aman but
not on kig

2 - YOLO v3 - Training on WiderFace requires modification
of the dataset label format model. Due to this bounding box
setup, faces that a really small were not been able to detect.
Person needs to be camera-facing .
[
Only male
has a face
prediction

#3 — Age / Gender - Picture on left is face-cropped manually,
so male classified in age (38-43). Female predicted as “male”
in both pic as she is not facing the camera.

Age
predicted in
15-20 group
with full
[ : body

Conclusion / Future Work

1.  Improve accuracy with more resources, data and GPU
2. Pipeline to crop pictures from live / rec videos
3. Bank product - Wait time analysis and so on.
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