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No comparison standard for 2D material band gaps in literature -
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< The few 2D materials studied so far have shown extraordinary electrical,
mechanical, thermal, and optical properties that can be utilized in fabricating
next-generation transistors, sensors, and energy devices

% The band gap (Eg) of a material plays a critical role in determining its
properties. 2D materials have significantly different band gaps compared to
their 3D bulk counterparts
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Problem Definition

Use deep learning techniques to predict the band gaps of 2D materials from the

properties of their 3D bulk counterparts
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Data and Features

<% MLP and Linear Regression Models: The dataset contains 666 samples
(chemical compounds) of 2D materials with their PBE-calculated band gap
values ranging from 0 eV to 6.5 eV

Sample Data
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4 Baseline Model for Transfer Learning: This dataset contains 6105
samples of 3D bulk materials. The input features include the sample’s bulk
properties such as bulk band gap, density, crystal system, etc.

< Pre-processing: For both the models, only the most stable compound for
the given composition were used

Test Set Error (Mean Squared Error) Training/Validation Error

P odelLoss

Model Accuracies

06 .
™
0s :
04 T
oz

02 w0 =

o o R O~
° o

00

Transter Learming Model Lo for 20 Data
013
LinReg ML Transfer Learning
Model Type.

Mean Squared Error

= T
] it ol

Comparison of Actual and Predicted Band Gap Values

Dbrbuton ofelements overth sample st
20 Matarit and GopDisrbution

[rpr—

Linear Regression

Multiayer Perceptron

Model it Transfer Learing for 20 Data

LsEEEEEELE

A 82 5 0003329 501585 0

BndGap o)

Preciced 20 Bandgap Values

¥y

(Y
>

Preced 20 Bndaen Vakes

Predictea 0 sandgap Vaues

o0

v1

el 20 Bandgo Values

I

0]

% 05 T 5 %
Actul 20 Bandgap Vaues

band gap prediction has only been done for 3D materials

%  Previous neural networks that predicted 3D material band gaps have
had Mean Square Errors (MSE) ranging from 0.5 - 0.8 units

< Al three models for the 2D dataset had lower error than the 3D
prediction models - may indicate that 2D band gaps are easier to
predict
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Model Analysis

< All three models obtained their lowest MSE when optimized with the
Adaptive Moment Estimation (Adam) algorithm

< Both the MLP and the model used for transfer leaming were trained
with mini-batches of size 32 (resulting in the spikes in the loss
curves)

< Initially, the model used for transfer learning overfit the data (low
training set MSE, high validation set MSE). To address this, we
reduced the number of neurons in each layer

% MSE of the model used for transfer learning was higher than the
MSE of the standard MLP - this may be due to the higher MSE of the
MLP for the 3D dataset, since its larger size causes overfitting

< Utilize a database that specifies the band gap type (direct/indirect) to better
predict the electrical properties

< Train a Convolutional Neural Network (CNN) on a database of the band
structure images to get better predictions

< Use one-hot vector encoding that uses a vector of length that equals the
total number of elements present in the dataset, so the neural network can
learn about each element individually
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