Introduction

- Multiplexed Ion Beam Imaging (MBI, shown below) is a novel imaging platform that allows biologists to image up to 40 proteins simultaneously in tissue.
- Images have far more channels than traditional RGB biological images (shown left).
- Increasing data acquisition increases quality, but at the cost of efficiency.

Our Goal: Employ deep learning to upsample data collected at low scan times to higher quality, noise free MBI images.

SuperMIBI: A convolutional neural network for prediction of upsampled multiplexed imaging data from short acquisition times

Noah Greenwald and Erin McCaffrey
Computer Vision
Mentor: Shervine Amidi

SuperMIBI Baseline & Network Architecture

Baseline: Non-local means denoising (NLM)
NLM denoising works by coloring pixels based on the signal of similar pixels. Here we use the efficient ALM implementation.
NLM denoising to act as a baseline to evaluate our model's quality. It is used to modify upsampled data, but sufficiently reduces noise and smooth signal.

SuperMIBI
SuperMIBI is built around the SRCNN architecture.
1. Layer 1: 128 filters of size 5 x 5, ‘same’ padding, stride of 1, batch norm, and ReLU activation.
2. Layer 2: 64 filters of size 1 x 1, ‘same’ padding, stride of 1, batch norm, and ReLU activation.
3. Layer 3: 8 filters of size 5 x 5, stride of 1, batch norm, and ReLU activation.

Implemented with Keras and Tensorflow

Data Description

- Data Overview
 - Three A x B pairs, each with size 1024 x 1024 x 2.
 - Each channel with various spatial distribution and dynamic range.
 - Datasets are the same as seen in the previous section.

- Dataset
 - Train: 95% of data, Test: 5% of data.

Hyperparameter Tuning and Model Training

Loss: Mean-squared Error

\[\text{Loss} = \sum \left(y_i - \hat{y}_i \right)^2 \]

Parameter Initialization

- Xavier

Filter number and sizes
- SRCNN uses a 9-1-5 structure for filter sizes across layers.
- Performance for SuperMIBI Improved by increasing filter sizes.
- Basic SRCNN uses 64 and 32 filters in layers 1 and 2, respectively.
- Performance for SuperMIBI Improved by using 128 and 64 filters for layers 1 and 2, respectively.

Data Normalization

\[X_{\text{norm}} = \frac{X - \mu}{\sigma} \]

- Performed on a per-channel basis.
- Improved model performance significantly.

Results

Example 1: Single channel (KBB), 14 epochs, MSE = 1.76

Example 2: Single channel (CD45), 14 epochs, MSE = 2.63

Example 3: Multi-channel (KBB+CD45), 14 epochs, MSE = 1.96

Discussion and Future Directions

- Normalizing the data set resulted in improved performance of the model.
- Larger filters better capture global features, but decrease the spatial accuracy of the predicted output, while smaller filter sizes result in upsampled noise, but better preservation of granular features.
- More training data and utilizing additional image channels may improve training.
- More complex architecture, such as those in the CARE-CNN may improve network performance.

References and Acknowledgements

We would like to thank our mentor Shervine Amidi for his help. Also, the C230 instructors, Andrew Ng and Kevin Kemmerer for their great courses.