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Obiective

To utilize Deep CNNs to generate high dynamic range

(HDR) image representations using a single low dynamic
range (LDR) photograph input image.

Figure 1: Left to right: an underexposed LDR image, an overexposed LDR
image, an image generated with OpenCV's tone-mapping algorithms[10][11]
(baseline), and the ground truth.

Data
Fairchild HDR Photographic Survey[4]

= 1035 LDR captures in 106 scenes, approximately 9 exposures
per scene

Figure 2: Three example scenes from the Fairchild HDR Photographic Sur-
vey [4] dataset. The human eye is capable of sufficiently wide dynamic range
to perceive detail in both regions, while machine sensors fail to do the same

in LDR imaging mediums

Data preparation

= 224 x 224 % 3 8-bit per pixel RGB images used (compatible
with VGG-16), normalized at input to 0.0-1.0 value

= Data augmentation: scaling, croppping, mirroring, rotations

« Train/Development/Test split: 80/10/10, splits were
performed on a per-scene basis to guarantee that the
development and test scenes are completely new to the model

= Image registration (alignment) using OpenCV Error
Correlation Coefficient[5] (issue root caused through error
analysis)

Table 1: Dataset augmentation and splitting, no. of samples.

Dataset split
Train Dev Test
10318 1260 1260
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= Total parameters: 22,467,992, with 58.96% trainable and
41.04% non-trainable in Keras model[9]

= Three major blocks: the LDR Encoder, the compressed
latent layer and the HDR Decoder

= LDR Encoder is the VGG-16 with pre-trained ImageNet
weights[8]

HDR Decoder (upsampling deconvolution layers) to
reconstruct image, intended to mirror decoder downsampling
convolutional layers

Skip connections added between encoder and decoder to
enable efficient information transfer from decoder to encoder

Architecture and Hyperparameter
Considerations

Tried both LeakyReLU and ReLU activation
activation for output layer

igmoid

Dropouts used to prevent overfitting

L2 regularization for intermediate layers (bias and kernel)

Transfer Learning through VGG-16 ImageNet weights

In VGG-16 encoder, only the layers with direct skip
connection to decoder were set trainable

Loss func: Total Variation + L1 Loss
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where N is the number of pixels.

Figure 3: Development dataset examples through the final model.

Left to right: Input (x), Reconstruction (§), and Ground Truth (y)

Figure 5: Feature reconstruction error on dome.

Table 2: Dataset PSNR metrics for baseline (OpenCV tone-mapping) and final
neural network (Convolutional Autoencoder) models.

Dataset PSNR [dB]
Train Dev  Test
Baseline (OpenCV)[27.90 27.80 27.81

Neural Network [16.35 16.10 15.05

Model

Discussion

Our model functions as a proof-of-concept, since far more data
would be needed to raise our test PSNR of 15.05 dB above our
baseline of 27.81 dB and fellow researchers.

Future improvements

= Incorporate hybrid network components (GAN architechture,
etc.)

= Discriminate for image quality metrics (e.g., PSNR or SSIM)

= Increase computation power (up from 1 AWS GPU)

= Train and tune more layers in the network

= Perform more systematic hyperparameter tuning

With only 106 scenes, our model learned to reconstruct objects

present in over 10,000 images. To avoid overfitting, this task re-

quires much more data than we were able to acquire in reasonable
time.
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For our implementation, see
https://github.com/BayBenj/cs230-proj
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