Runway Recognition

Michael Hardt
mwhardt@stanford.edu
Carlos Querejeta
carlosq@stanford.edu
Grzegorz Kwieciki
kawiecki@stanford.edu

https://youtu.be/kKu6Cp_MAw

1. Introduction
- Autonomous aircraft will require redundant and robust solutions for navigation.
- Without GPS or other aids, need new tools to rely upon its camera for landing.
- Assume the runway’s position is known, but the aircraft doesn’t know its position well.
- **Question**: Is the runway in view in the forward-looking camera?
- If so, how large is the runway, what is its relative angle within the image?
- **Use Deep Learning to answer**: From camera calibration and barometric altitude, one can determine aircraft position relative to the runway and then plan for landing.

2. Data
- Two data sources: Google Earth and osgEarth.
- Google Earth images are high quality, but need manual preparation.
- osgEarth transforms satellite orthoimagery from free, online databases to any camera location and perspective which we automated.
- 16 single runway airports selected, 1186 random samples of camera positions: 83% viewing runway, 17% negative samples without runway.
- Pixel masks calculated.
- 1024x768 resolution scaled and padded to 416x416.
- Dataset split: 80%:10%-10% for training / dev / test sets.

3. Methods
- Yolo (v3) model
- 106-layer fully convolutional architecture
- Multilabel classification
- Residual blocks & skip connections for bigger network
- Parallel object detections on 3 scales
- 416 x 416 native resolution
- Tiny-Yolo also tested
- Enhanced detection of small objects

4. Results
- Successful application of Transfer Learning of Yolo and Tiny-Yolo pretrained on COCO dataset to runway recognition task.
- Hyperparameter search conducted with following results:
 - number of trained layers: all
 - learning rate: 10^{-4}
 - batch size: 8
- Excellent runway detection capability: $mAP = 0.94$
- on test set. Even detected unexpectedly multiple runways which were not initially labeled, and some runways at a large distance that even a human can’t easily recognize.
- Tiny-Yolo also did well with a $mAP = 0.72$ with only about a third of the number of layers of the full Yolo.
- Semantic segmentation attempted which classifies each pixel in image and indicates shape, but no conclusive results obtained.

5. Conclusions
- Yolo achieved excellent, promising results. Its detection capability in some cases beat the human eye!
- Now need to validate model on real flight imagery and check its sensitivity to varying conditions, i.e. lighting, terrain, distance.
- **How does Yolo answer the initial question? Yolo tells us first if the runway is in the image.**
- Then, in all but very few cases when the aircraft is already perfectly aligned with the runway, the runway appears as a diagonal of the bounding box. So the diagonal length gives the runway length in pixels!
- Still need the runway orientation. Our current plan is to extend Yolo with a binary variable or probability which indicates whether runway appears as left or right diagonal.