Fine-Grained Image Classification

Debabrata Sengupta dsgupta@Stanford.edu

Motivation

- Discriminating between sub-classes of an object (e.g. breeds of dogs)
- Harder problem than image classification
- Large intra class variation
- Small inter-class variation

Models

Objective: Minimize cross entropy loss.

Optimizer: Adam.

Tried training three different models.

	My own CNN	<u>VGG16</u>	<u>ResNet50</u>
:	Trained from scratch. Insufficient training data => Overfits.	 Transfer learning, data augmentation, Regularization. Best model I got. 	Overfits a lot even with transfer learning, data augmentation, regularization.

Results

- · VGG16 model performed best.
- Achieved 40.70% test accuracy.
- Authors of the Stanford Dogs dataset achieved 22% accuracy.
- · Current state of art: 88.9% accuracy.

11 11	m	11.11.1 0	m
Model	Training Set	Validation Set	Test Set
My own CNN archi- tecture with regular- ization		30.67	31.55
VGG16 (Transfer Learning + Augmen- tation + Dropout)	43.87	40.20	40.79
ResNet50 (Transfer Learning + Augmen- tation + Dropout)	94.14	23.83	24.72

Future work

 Explore ensemble methods => Training K expert classifiers and aggregating their decisions

Dataset

- Stanford Dogs more than 22,000 images from 120 breeds of dogs.
- Partitioned into 12,000 training and 8580 test images.
- Split training set into train and validation (80%: 20%)
- Breed label and Bounding boxes annotated.
- Background clutter, occlusion, variation in color, poses.
- · Images of different sizes.

Error Analysis

Confusion Matrix Heat Map

- · Diagonal has bright spots.
- Accuracy not very high => some off-diagonal elements also have bright spots.

Commonly misclassified examples

Great Pyrenees (left) that is often misclassified as Samoyed (right)