Exploring additive and multiplicative similarity measures in multilayer perceptrons.

Santiago Aranguri aranguri@stanford.edu

Introduction

In this project, we are going to analyze the
advantages and disadvantages of different ways
of measuring the similarity between vectors in
an embedding space that represents real
information. This is important because having a
good similarity measure enables us to solve most
of the machine learningproblems, just by
transforming the representation of the input to a
convenient space and then measuring the
similarity between the input and previously
defined categories.

PITCH LINK: https://youtu.be/dNnONvLVg9I

Clustered vector dataset. We generated

m = 10000 vectors drawn uniformly where

v € [—1,1]" with n = 100. Then, for each vector,
we created 2 vectors by adding to it random
Gaussian noise with mean 0 and variance 1.
Given two different random vectors, the correct
output is 1 if they come from the same cluster
and O if they don't.

bAbi dataset. The bAbl dataset is a set of tasks
for natural language processing. Although it
includes different types of tasks, in this project
we focused only on the two supporting fact task.
That task consists of receiving a set of facts and
answering a question that required two facts
from the list to be answered.

Methods

A similarity measure is a function sim(g, M) that
receives a query vector g and memory vectors M
and outputs a probability distribution P over M
where each p € P represents the similarity
between the g and m € M. In general, sim(g, M)
has two steps. First, we compute the similarity
f(q, m) for all m € M. Secondly, we normalize
the probabilities by using a softmax.

Additive interactions (A.l.) We define an
additive similarity function as

f(a.m) = |lg—mll:.

Multiplicative interactions (M.l.) We use the
element-wise product for the multiplicative
similarity, which is defined as f(g, m) = q ® m.
Parametric interactions An example of using
trained parameters is f(g, m) = MLP(q, m; 8)
where MLP is a multilayer perceptron with only
one unit for the output and 6 as the weights.

—— Model without multiplicative interactions
—— Model with multiplcative interactions

Experiment - Memory Networks

We used the bAbi dataset and the Dynamic
Memory Network (DMN), a model that performs
multiple passes through the input, computing a
memory vector that is taken as input for the next
pass. For each step that we compute the
memory state, we need to know what facts to
consider, so we have gates. We compute the
values for the gates by passing z through a two
layer MLP. z is defined as follows.

z=[c,m,q,|c—q|, |c—m|, c®q, cOm, c'Wq, c'Wm]
where ¢, m, and g are representations of the fact,
memory state, and question respectively. The
first experiment was using z as above. After
around 200k training examples, the model
reached a 99% accuracy. In the second
experiment, we removed the four last entries in
the nine entries Z has. Thus we only had A.I..
Here it took 300k training examples to reach
99%. Finally, we removed the fourth, fifth,
eighth, and ninth entries, so as to have only
element-wise M.L.. Surprisingly, the model never
got a better accuracy than 13%, after going
through >1M training examples.

1N\

— Model without multiplicative interactions
—— Model with multiplicative interactions

/
[
[

050 [
/_/W

[500 1000 1500 2000 2500
Number of batches

Figure 1: Random noise with variance 0.5.

0 200 400 600 1000 1200 1400 1600
Number of batches.

Figure 2: Random noise with variance 2.

Experiment - Multiplicative interaction

We used the dataset and task from "clustered
vectors dataset." We tested whether M.I. were
useful for this task by using two MLPs. MLP;
receives the two random vectors as input and
outputed its similarity. MLP, receives as input
the two random vectors and their element-wise
product, and it has one output unit. Both MLP
had two layers and 300 hidden units with ReLU
as activation function. MLP; reached an accuracy
of 95% while MLP; couldn’t capture underlying
information from the input, getting an accuracy
of around 50%. We thought that the higher the
variance, the more difficult it is to distinguish
between two vectors in the same cluster. Using a
variance of .5, MLP, got around 90% and MLP;
around 60% (see figure 1.) However, using a
variance of 2 neither of the two MLPs reached a
high accuracy. While MLP; barely distinguished
between the random vectors, MLP, achieved an
accuracy of around 65%. See figure 2.

Conclusion, discussion, future

In the M.I. experiment we saw that the model
that receives the elementwise product always
outperforms the model that doesn't receive it.
But, in the DMN, the efficacy of the M.I. vs A.l.
was the reverse. Both experiments suggest that
depending on the problem one is trying to solve,
using different interactions between the input
data can prove useful. An exalanation for this is
that the DMN is more complex and thus is able
to model M.1. without receiving it as input.
Future work could help in understanding why the
model that didn’t receive A.l. in the DMN
performed so poorly and analyzing whether
more complex model don’t require M.I. as input.
(As the DMN seems to do.)

"

