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Model Comparison

e Obtained via ATAC-seq on 201 unique cell types
e Openness = proxy for possible epigenetic activity
e Openness signal in peaks
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factors(TFs) and chromatin regulators (CRs) bind to DNA and affect gene expression.

e Predictions skewed towards
zero

e Greater prediction error for
genes with higher expression

e Mean square error
decreases exponentially as
outliers removed

e Uniformly noisy distribution of
bin contribution to MSE

e One cell type had high
variance in prediction vs. true
expression

Figure 2. A proposed view of epigenetuic regulation of gene expression. Transcription ‘

Create Openness Bins 4

e Bin as function of distance from i
each gene’s transcription start site
(TSS)

e 2x 1000 bins for 1 million BP
(upstream and downstream)

e New shape: 17,794 genes x 201
cell types x 2000 openness bins

o Distribution of gene expression
approximately normal

e One outlier sample
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Figure 5. Top Left. MSE. Top Right Botiom Left: MSE over test set as
MSE outlers are removed. Bottom Right: Openness bin vs. dMSE/GX,
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