SOMANET: SEGMENTING INTERNEURONS IN FOREBRAIN ASSEMBLOID MICROSCOPY

Introduction

The Pasca Lab in Stanford’s Department of Psychiatry and Behavioral Medicine
recently developed a powerful human 3D brain organoid platform. Using their video
data, we hope to build a platform to quantify the saltatory migration of interneurons to
the cerebral cortex, but the first step requires segmentation of interneuron somas. We
construct a soma segmentation dataset from interneuron migration videos, implement
data augmentation, and perform transfer learning on a UNet architecture trained on
non-neuron nucleus segmentation data.
o Input: 256x256 RGB images cropped from interneuron migration videos

® Output: 256x256 black and white segmentation mask

Data and Features

We train the U-Net on 670 images of non-neuron nucleus segmentation from the
Kaggle 2018 Data Science Bowl [1]. For transfer learning, our hand-labeled dataset
includes 32 training examples and 5 validation examples. The UNet architecture

is designed to achieve high performance even with small datasets. Additionally, we
augment our dataset by implementing lastic deformation (with an alpha of 34 and
a sigma of 4) and mirroring. The full augmented training set consists of 96 training
examples

Fig. 1: Interneuron migration in forebrain assembloid (left), input image (middle left), ground truth mask (middle right)

baseline predicted mask (right)

Model

We implement a UNet architecture to serve as a basis for our cell segmentation net-
work. This architecture consists of combinations of 3x3 2D convolutions, batch nor-
malization, ReLU layers, 2x2 max pooling layers, and transposed 2x2 2D convolutions,
We utilize binary cross entropy, defined below, as our loss function

Uz,y)=L={li,....I}", In=—wn[yn-logzn+ (1 yn)-log(l — )]

Fig, 2: U-Net CNN model architecture [2]
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Results

We tuned the following parameters for our UNet: learning rate, batch size, and weight decay.

All training was performed on 32 training examples and all testing on 5 validation examples.

model | It [batch size|cpochs| decay |layers retrained | loss | training jou] test iou
baseline N/A | N/A | N/A 0 N/A| 010 7
T |[LOOE03| 8 50 |LOOE-04 3 0.016] 039 0.50
2 |[LO0E02[ 8 50 |LO0E-04 3 0.017] 017 0.25
1.00E-04 8 50 |1.00E-04 3 0.018 0.25 0.34
T00E-03| 16 50 [LO0E-04 3 0027|022 032
LOOE-03| 32 50 |LOOE-04 3 008|024 0.37
6 |LO0E03] 8 50 |LO0E-03 3 008|022 034
7 |L00E03] 8 50 [1.00E-05 3 0027 02 034

Tab. 1: Model comparison for hyperparameter tuning
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Fig 3: Training loss: learning rate comparison (top left), batch size comparison (top right), weight decay comparison (bottom left).

model 1 (bottom right)

Fig. 4: Validation results with model 1: predicted mask for input image in Figure 1 (left), input image (center left), ground truth mask

(center right), predicted mask (right)

Discussion

The model visually produces segmentation masks similar to the ground truth seg-
mentations. We optimized our model for IOU and satisficed acurracy and precision
of recognizing and segmenting individual somas. With our final model we achieved
an average validation I0OU of 50%, accuracy of 94%, and precision of 62%. Overall
we are satisfied with this model as a baseline, but hope to improve these metrics to
reach an average IOU of 60%. Our model is limited by the amount of data available
for transfer learning due to the time-consuming nature of preparing and segmenting
our own novel data. Utilizing transfer learning on a pre-trained UNet architecture
proved to be successful in the segmentation of neuron somas and can provide a base

for tracking interneuron movement

Future Work

Video Segmentation: We would like to extend our network to be able to track
the neurons in a moving video. This involves adapting the input and output of
the network to take videos instead of individual frames.

©

Tracking: By segmenting these videos, neurons no longer overlap with each
other as frequently and are much more clearly defined. Therefore, we hope to
utilize idtracker.ai to track these videos [5]

3. Data Processing: From the tracked videos, we then would like to analyze them
to quantify average velocity, direction, and saltation frequency of internueron
migration.

Compare: We would like to compare the performance of this network to YOLO’s
performance for tracking [4].
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