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o The NCBI Gene Expression Omnibus (GEO) is a repository of microarray datasets
derived from tissue biopsies or blood.

# In biomedical research, low number of observations available is due to a lack of avail-
able biosamples, prohibitive costs, or ethical reasons

# The development and usage of GANs and VAEs for omics data augmentation is
scarce

* Augmenting observations with generated in silico samples could lead to more robust
analysis results and a higher reproducibility rate

o Arecently published method using conditional single-cell Generative Adversarial
Neural Networks (cscGANSs) used single-cell RNA-seq data to generate realistic cells of
defined types

* We adopt this cGAN and apply it to sample-level gene expression data derived from
GEO to improve biological analyses for rare diseases

Data and Methods

& We mined the GEO database for biopsy
microarray gene expression samples from
cancer patients and healthy tissue controls
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+ We use a well-established batch-normal-
ization technique, ComBat, to remove batch
effects in microarray datasets inherent to
heterogeneous conditions such as different  Figure 1.cGAN workflow adopted for microarrays.We use two

fully-connected neural necworks for our generator and discrimi-
platform technologies, geographic I0cation,  pator.in the generator, there are three hidden layers of increas-
etc. ing size and vice-versa for the discriminator.

Experiments

Hyperparameter tuning
» We tuned learning rate values between 0.1 to 0.00001 logarithmically. Our final
model used learning rate of 0.0001, decaying to 0.00001.
o We tuned batch size, from 2' to 27, and our final model was 27.
Distance metrics
e Wasserstein distance general equation:
WP R) = infyence,rBay—|1x =l

» Wasserstein distance (Kantorovich-Rubinstein duality):
Wt B) = supjp| s1Beep, f() = Exp f(X)

Model evaluation
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Figure 2. Model evaluation using and gene-ge fation. (A) Using 2 UMAPwe compare
the nonlinear combination of features that define disease and healthy groups and compare the clustering pattern of real data with
generated data. (B) We look at the correlation values of gene expression between real data and generated data, where one point is a
single specific gene.

* (A) Generated data had a similar clustering pattern as real data.

o (A) Clustering was biologically relevant; here we show that CLCA4, which is highly
expressed in the Gl tract, is a defining feature for the formation of clusters.

# (B) When real data is compared to generated data, gene expression values is highly
correlated, suggesting the GAN is retaining gene-gene network structures.
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Figure 3. Model evaluation using random o of discriminator . In the beginning of the
‘model, the discriminator easily distinguishes generated data from real data. Over the course of training the cGAN, it becomes.
increasingly harder for the discriminator to correctly distinguish generated and real data, as measured by ROC.

+ Used random forest classifier with 5-fold CV and ROC to measure accuracy of dis-
criminator:

® Training cGAN over time resulted in worse accuracy of discriminator:

Figure 4. Model evaluation using diflerentally expressed genes between healthy
and disease samples. Using all real data, we first calculate differentially expressed
(DE) genes between disease and healchy,at 2 p-value < 0.00001. Downsampling
the healthy samples, we lose significance in most of these genes, whereas replen-
ishing missing healthy samples with generated healthy samples recapitulated
most DE genes.

» Downsampling healthy samples reduces # of DE
genes, potentially hiding biologically relevant genes.

DE genes correctly dentied

# Replenishing with GAN-generated healthy sam-
ples restores DE genes equivalent to that from the
real data.

Figure 5. Model evaluation using downsampling analysis. Using clustering algorithms like UMAR we show that downsampling of
healthy sampls results in the of a distinct cluster becween healthy and ps. The healthy
samples using GAN-generated data trained using downsampled data restores clusters.

+ Downsampling eliminates distinct healthy and disease samples, but generated data
using downsampled data can restore the clusters

o In severely imbalanced data, cGAN can learn enough gene-gene interactions from the
disease samples to infer healthy state

Conclusions/Future Directions

o Overall, our model evaluations suggest that our cGAN was able to generate real-like
data that:

1) retained gene-gene interactions and the gene expression network

2) was difficult to distinguish from real data

3) and could learn even with downsampling using disease samples as a reference.

» Can this be applicable across diseases? Focused on CRC, what about other cancers?
Other diseases?
» s this usable for rare diseases? Push the model with less data

» Validation needed in downstream biological analyses--perhaps some experiments
focused on genes that would not have been picked up given current amount of data




