

Generative Aging of Photographs for Kinship Verification

Zoe Ghiron (zghiron@stanford.edu) Yash Chandramouli (yashc3@stanford.edu) Aeronautics/Astronautics Department, Stanford University

Motivation

- Kinship verification has applications to paternity testing, human trafficking, and
- Inputs are a pair of face images, output is whether they are blood relatives
- Current methods using photographs have seemed to stagnate at around 70% accuracy
- Through pre-processing inputs with a generative aging algorithm we were able to increase performance in a model-agnostic way

Data and Features

- Data came from Families in the Wild (FIW)[4]
- 50,000 color image pairs of 11 different classes of family relationships (Father-Daughter, Grandmother-Grandson, etc.)

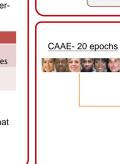
Training	Dev	Test
153	5	5
families	families	families
46,735	3,276	1,558
triplets	pairs	pairs

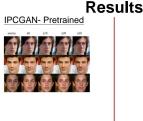
- For CNN training the outputted "features" were encodings of the images. The generative networks were learning features that
- corresponded to the facial manifold so they could properly age the faces.

Modeling CNN^[1] Triplet Loss: $L(A, P, N) = max (||A - P||_{2}^{2} ||A - N||_2^2 + \alpha$, 0) where α was empirically chosen to be 0.4 $D = \left| \left| encoding_1 - encoding_2 \right| \right|_2^2$, where D > ϵ means the two inputs are relatives, ϵ IPCGAN[3] chosen from dev set Uses an age estimator and an identity-preserved condition to Attempts to age faces by propagating certain decrease unnecessary smoothing in features across facial manifold. age-progressed faces Normalized FIW data Evaluate

Discussion

- As hypothesized, the best option for accuracy was to age the images to a younger age.
 The best CAAE age was category 2
- not category 1 likely because category 1 had too many false positives (encodings were too similar overall)
- Aging forward using IPCGAN yielded the highest precision, likely because the preserved features made encodings inherently more different
- Overall saw up to a 3% boost in accuracy. This is raised to a 5% boost in accuracy by adjusting hyperparams.





GAN	Age category	Accuracy	Precision	Recall
NA - no pre-processing	-	57.7	60.1	48.9
CAAE	Category 1	56.7	56.5	63.7
	Category 2	60.4	60.7	62.1
	Category 3	58.8	59.6	58
	Category 4	60.2	61.6	57.1
	Category 5	59	60.9	53.2
	Category 6	58.8	60.6	53.6
	Category 7	58.7	61.6	49.1
	Category 8	56.3	58.6	46.9
	Category 9	56.5	58.8	47.3
	Category 10	55.3	57.7	44.1
IPC	Category 1	57.1	59.3	48.9
	Category 2	57.1	59.8	46.9
	Category 3	57.1	60.9	43
	Category 4	56.7	60.7	41.4
	Category 5	57.6	63.1	39.4

References

[1] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song Sphereface: Deep hypersphere embedding for face recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [2] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial autoencoder. In IEEE Conference on Computer Vision and attern Recognition. University of Tennessee, Knoxville, 2017

[3] Zongwei Wang, Xu Tang, Weixin Luo, and Shenghua Gao. Face aging with identity-

[3] Congwei Wang, Xu Iang, Wexin Luo, and Shengnua Gao. Face aging with identity-preserved conditional generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2017. [4] Joseph P Robinson, Ming Shao, Yue Wu, and Yun Fu. Families in the wild(fiw): Large scale kinship image database and benchmarks. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, No.11. IEEE, November 2018.

Future Work

See if can apply to SphereFace for state-of-the-art performance Use an age/gender estimator to generate more interesting aging policies (such as aging to the average age, or the age of the younger photo, etc.)