

Detecting depression: how to have a happier campus

Diogo Braganca – braganca@stanford.edu Department of Physics, Stanford University

Motivation and summary

- Depression is becoming more and more a serious problem in public health;
- Rate of depression among graduate students is much higher than the average population;
- Being able to detect it early could be of major importance for the well being at universities;
- We built and compared 4 models to detect depression using the DAIC-WOZ dataset;
- We found that it is easier to detect depression with the transcripts than with the audio clips.

Discussion

- Model 1 better than Model 2
- Intriguing that Dev and Test acc. are higher than Train.
- Model 1 can predict any sentence!
- Audio models were not learning, they predicted the same outcome.
- Model 3 stuck on "Mod. severe" while Model 4 stuck on "Mild"
- Next steps: increase training set for audio models and deepen architecture, gather more "real" data for transcript models

References

[1] X. Ma et al., DepAudioNet: An Efficient Deep Model for Audio based Depression Classification, Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, 35 (2016).
[2] J. Pennington et al., GloVe: Global Vectors for Word Representation (2014)

[3] M. Valstar et al., AVEC 2016 – Depression, Mood, and Emotion Recognition Workshop and Challenge, CoRR (2016),

Data and Features

- The DAIC-WOZ dataset contains audio and video information about 189 interviews;
- It contains audio features previously extracted;
- Labels are given by the result of the PHQ-8 test that assesses the level of depression;
- Divided in levels: none, mild, moderate, moderately severe, severe;
- We only used the transcripts and applied a short-time Fourier transform to the audio;
- For the transcript, we used Word2Vec encoding with GloVe.

Models

Transcripts

- Model 1: LSTM + (2 x dense)
- Model 2: (2 x LSTM) + dense

Audio

- Model 3: 1D Conv + (2 x GRU)
- Model 4: (2 x 2D Conv) + dense

Results

Model 1	None	Mild	Moderate	Mod. Severe	Severe
None	3533	19	21	8	12
Mild	8	2881	23	7	15
Moderate	8	9	3084	5	18
Mod. Severe	12	11	34	2770	16
Severe	7	6	5	5	2398

Model 4	None	Mild	Moderate	Mod. Severe	Severe
None	0	40	0	0	1
Mild	0	111	0	0	0
Moderate	0	73	0	0	0
Mod. Severe	0	38	0	0	0
Severe	0	35	0	0	0

vere 12	۱a	am a gra	aduate st	udent (none	
15 18	۱a	am getti	ng marr	ied 🙌	severe	
16 398	l c	letest m	y horrible	job 🤨 n	noderate	
			Train acc.	Dev acc.	Test acc.	
vere 1		Model 1	0.92	0.98	0.98	
		Model 1 Model 2 Model 3	The second second	The second second second	The state of the state of	

0.37

0.37

Model 4 0.37