Upscaling Audio Quality with Deep Convolutional Networks
Daniel Semeniuta
dsemeniu@stanford.edu

Data and Features
- VCTK Corpus of 109 English language speakers featuring over 40 hours of audio in wav format
- Build 4x low resolution dataset by passing each file through low pass filters
- Simple audio dataset, easy to assess subjective quality and human perception

Motivation
Goal: Audio Super Resolution – Generating high quality audio from low-resolution data
Methodology: Deep convolutional network with residual connections
Input/Output: Upscale low resolution audio with cubic spline, feed through network, return high-res audio

Discussion
- Additive residual connection between source time series and target time series so model only needs to learn the difference between low- and high-res audio. Why not apply same logic to residual connections between intermediary layers?
- Impresssive results via metrics, greatly outperforming paper. However, fails to pass the listening test and unable to compare to low-res input.
- Even exact model architecture and parameters as original paper fail.
- Unable to listen to low-resolution downsampled audio. Audio format passed to model in prediction code does not match training format. Bug in data processing?

Model
- Similarities between Kuleshov et al. and my model
 - Downsampling blocks double hidden depth while halving time dimension
 - Upsampling blocks halve hidden depth while doubling time dimension, achieved using dimensional subpixel shuffle
 - Maintain residual connection from source and downsample to target and upsample

- Differences lie in Upsampling Blocks
 - Twice as many filters in convolution to increase time dimension.
 - Additive rather than stack residual connection between downsampling and upsampling blocks

Results
- Model Spectrograms
- Table: Signal-to-Noise Ratio, Log Spectral Distance, Mean Squared Error
- AudioUNet 45.8967 1.19825 4.1263e-05
- BigAudioUNet 48.5504 1.09285 3.27255e-05
- AudioUNet v2 47.5956 1.10706 3.57351e-05

Future
- Finish debugging metric calculation and data processing for prediction.
- Rather than utilizing cubic spline for baseline, completely rely on model to fill in blanks in sampling rate.
- Introduce other components of generative modeling, such as an adversarial network.
- Test other upscaling ratios besides 4x such as 6x and 8x.

References Cited