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Data and Features

e VCTK Corpus of 109 English language
speakers featuring over 40 hours of audio
in wav format

e Build 4x low resolution dataset by passing
each file through low pass filters

e Simple audio dataset, easy to asses
subjective quality and human perceptioy

e Additive residual connection between
source time series and target time series
so model only needs to learn the
difference between low- and high-res
audio. Why not apply same logic to
residual connections between
intermediary layers?

e Impressive results via metrics, greatly
outperforming paper. However, fails to
pass the listening test and unable to
compare to low-res input.

e Even exact model architecture and
parameters as original paper fail.

e Unable to listen to low-resolution
downsampled audio. Audio format
passed to model in prediction code does
not match training format. Bug in data
processing? y
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Goal: Audio Super Resolution - Generating high quality
audio from low-resolution data

Methodology: Deep convolutional network with residual
connections

Input/Output: Upscale low resolution audio with cubic
spline, feed through network, return high-res audio )

Additive residual connection
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Original Low-Res Paper Prediction My Prediction
Sample
Signal-to- Log Spectral Mean
Noise Ratio Distance Squared
Error
AudioUNet  45.8967 1.19825 4.1263e-05
Big AudioUNet 48.5504 1.09285 3.27255e-05
AudioUNet v2 47.5956 1.10706 3.57351e-05
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Similarities between Kuleshov et al. and my model

e Downsampling blocks double hidden depth while halving time
dimension

o Upsampling blocks halve hidden depth while doubling time
dimension, achieved using dimensional subpixel shuffle

e Maintain residual connection from source and downsample to
target and upsample

Differences lie in Upsampling Blocks

e Twice as many filters in convolution to increase time dimension.

o Additive rather than stack residual connection between
downsampling and upsampling blocks

e Finish debugging metric calculation and data
processing for prediction.

o Rather than utilizing cubic spline for baseline,
completely rely on model tofill in blanks in
sampling rate.

e Introduce other components of generative
modeling, such as an adversarial network.

e Testother upscaling ratios besides 4x such as
6x and 8x.
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