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BACKGROUND MOTIVATION 2. NEURAL NETWORK ARCHITEC

* Human Activity Recognition has great potential for customized healthcare Siamese (non-weight sharing) CNN
« Smartphones incorporate sensors (accelerometer, gyroscope etc.)
« Sensor data can be used to classify human activities and transitions
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Siamese (non-weight sharing) CNN

* Left subnetwork takes time traces as input (6 zero-padded channels)

« Right subnetwork takes frequency and phase traces as input (12 interpolated channels)
* Late sensor fusion employed for encoded, efficient feature extraction

* ConviD filter size: 1x14  Conv2D filter size: 3x42  Filter #: 60 learning rate: 0.0026

« Improvements compared to state of the art:
1. Advanced preprocessing including data augmentation
2. End-to-end deep learning solution (no feature extraction)
3. Improved architecture enabling accurate classification of transitions

1. DATASET

* SBHAR dataset of 6 activities and 6 postural transitions from the Galaxy Sl
« 3-axial linear acceleration and 3-axial angular velocities traces at 50 Hz

Sequence (LSTM) Model
« Takes time traces as input (6 channels of variable length)
* Two LSTM layers (128 to 32 output channels)

Random Coarse- to Fine-grain Hyperparameter Search
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3. RESULTS and DISCUSSION

Literature comparison (grouped postural transitions):

SVM, 561 features extracted [1] CNN (2.5 second traces) [2]
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FUTURE WORK Architecture Comparison:
* Model ensembling using data representations from sequence models CNNI  CNN2  LSTM  SVM[I] Perceptionnet (CNN) [2]
* Implement the model on a smartphone for real-time inference Number of categories 12 7 12 7 6
. . Error Rate 329% 082% 1811% 322% 275%
Incorporate frequency and phase traces into the sequence model




