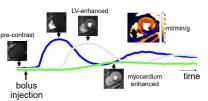
Automated Detection of Left Ventricle in Arterial Input Function (AIF) Image Series for Cardiac MR Perfusion Imaging: A Large Study on 13K Patients **CS 230**

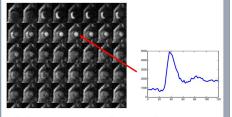
hxue@Stanford.edu

National Heart Lung and Blood Institute, National Institutes of Health

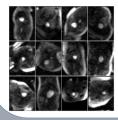
Spring 2019



Quantify the blood flow in myocardium requires arterial input function



High accuracy to detect of AIF LV



- Anatomical and imaging variation
- High accuracy required by stress
- Run in hospitals →Deploy the NN

Large data cohort

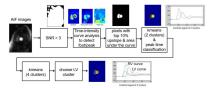
Three hospitals: Barts Heart Center, London, UK, Barts; Royal Free Hospital, London, UK, RFH; University of Leeds Hospital, Leeds, UK, ULH

Centers	#Pts	#scans	#MR	Duration
Barts	10,128	20,346	5	20160429 - 20190215
RFH	2,273	3,267	2	20160609 - 20190214
ULH	583	1,414	1	20160524-20190214
Total	12,984	25,027	8	(22,941 for Tra; 2086 for Dev)

Test set: 429 patients, 880 perfusion scans 20190216-20190314

Speed up data labelling

- Heuristic method was implemented to help mark LV
- Manual check for failed detection and correct if needed
- ~200hrs to label data cohort



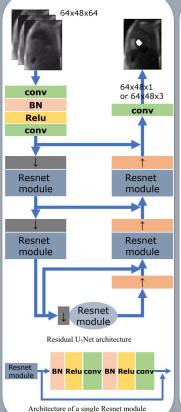
Model and loss function

- A variation of U-Net [1]
- ResNet module as building block [2]
- Both binary and 3 class segmentation (Background, LV, RV)
- Loss function: combined cross-entropy and log IoU $^{\mbox{\scriptsize [3]}}$

$$\begin{split} I_{IoU} &= \frac{1}{N} \sum_{l=0}^{N-1} \frac{y^l \hat{y}^l}{y^l + \hat{y}^l - y^l \hat{y}^l} & I = I_{cross-entropy} - \lambda \cdot \log (I_{IoU}) \\ & \text{N is the number of pixels} \\ & \text{ADAM optimization} (0.9, 0.999, 1e-8), \lambda=0.5, \text{ learning rate 1e-3}, \end{split}$$

reduce by x2 every 10 epochs

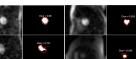
· Hyper-parameter search for: Number of CONVs in ResNet Module (5 – 9) Number of filters for each CONV (64 - 256)



Results

- Dice > 0.5 → success
- 3-class seg
- Tra: 99.956% (10 out of 22,941); Dev: 99.856% (3 out of 2,086)
- Binary seg Tra: 99.865% (30 out of 22,941) Dev: 99.808% (4 out of 2,086)
- 3-class seg, Test performance 99.77% success (878 out of 880 cases)

93.1% cases with dice higher than



Deployed to hospitals

- Model loading ~250ms
- Apply model ~150ms
- CPU only inference

Next steps: a) Continue to collect test data; b) retrain/redeploy with failed cases added; c) collect end-user feedback

References

References

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in MICCAI, pp. 234–241, Springer, 2015.

22. Zhang, O. Liu, and Y. Wang. Road extraction by deep residual u-net. CoRR, abs/1711.10684, 2017.

Shivets A. Rabhin A. Kallini AA, Igliovikov V. Automatic Instrument, Segmentation in Robot-Assisted Surgery Using Deep Learning. 2018.