Teaching Your MAML

Motivation

We want general Al! But how do we train it? Let's look to humans!

Approach

Introduce a **teacher model**that changes problem
difficulty **in response to student progress** during
meta training.

an adaptive teacher for meta-learning

Gleb Shevchuk glebs@stanford.edu

Experiments

Three meta learning experiments:

1) MNIST classification^[1]

- 2) Omniglot 5 way 1 shot classification^[2]
- 3) Omniglot 20 way 1 shot classification^[2]

Compare teacher-aided model to regular MAML^[3].

Discussion

- 1) MAML already really hard to train. [4]
- 2) Hard to find best teacher hyperparameters.
- Still need to know "hardest" problem.
- 4) Unclear how much teacher helps.
- 5) Experiments were pretty similar.

The Nitty Gritty

- 1) Task distribution has difficulty Ψ with current parameters ω
- 2) Perturb ω with meta train step
- 3) Approximate gradient $\nabla \omega$
- 4) Teacher does gradient descent over task space parameters!

Models

Three layer conv net with batch norm and max pooling used for all 3 experiments.

Results

Adaptive teacher seems to help generalize!

Future!

Extend to:

- Continuous task parameter space
- 2) Regression and reinforcement learning problems
- 3) Lifelong settings

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-agnostic metalearning for fast adaptation of deep networks"

networks"
[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey. "How to train your MAML"

[1] Yann LeCun, Corinna Cortes, and CJ Burges. "MNIST handwritten digit database" [2] Brenden Lake et al. "One shot learning of simple visual concepts."