

Predicting stock prices with LSTM Network

David Duemig • dduemig@stanford.edu

https://www.youtube.com/watch?v=QQE_Yw5UUyc

CS 230 Poster Session, Deep Learning, Winter 2019

Introduction

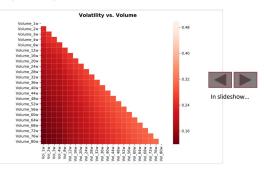
- The main goal of this project was to investigate whether modern DL techniques can be utilized to more efficiently predict the movements of the stock market
- Specifically, we applied an LSTM recurrent neural network to predict whether the S&P 500 will increase or decrease over the next trading month
- Stock price forecasting remains a difficult task even after simplifying the problem to a binary price trend and applying powerful deep learning models
- Nonetheless, we provide information which is useful in guiding future work, specifically in determining relevant feature sets and model architectures

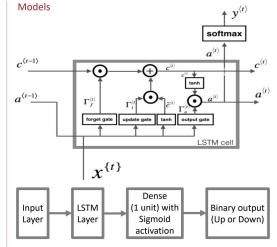
Data

- The dataset provides daily quotes for the S&P 500 going back to 1980 and is downloaded using the Yahoo Finance API
- It comes with the "Open", "High", "Low", "Close", "Adj Close", and "Volume" for each day
- In total, the raw dataset consists of about 10,000 rows and 6 columns

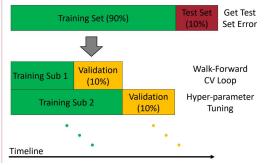
Features

- All features are derived and include rolling (i) logarithmic returns, (ii) trading volumes, and (iii) volatilities for the past i ∈ {1, 2, 3, 4k | 1 ≤ k ≤ 20} trading week(s)
- This results in a total of 69 features
- By combining these features, 7 feature sets were created
- The input features have been shown to have widespread predictive power





- Due to the nature of our features (returns, volatilities, and trading volumes of the past week(s), we use a stateful LSTM architecture with a batch size and a time step of 1
- By combining the feature sets, 7 models were created
- To make our models more robust, we use walk-forward-crossvalidation with a dev size of 10% for our model development
- In order to provide an unbiased evaluation of our final model we withhold the last 10% of our data as a separate test set



Results

Model	Description	Dev/Test Acc.	Dev/Test Acc.	Test AUC	Test AUC
		LSTM	Baseline	LSTM	Baseline
1	Feature Set 1	61.02%/	54.48% /	0.52	0.52
		64.38%	65.01%		
2	Feature Set 2	55.62% /	55.44% /	0.52	0.54
		65.01%	66.07%		
3	Feature Set 3	56.49% /	55.21%/	0.54	0.48
3		65.12%	63.95%		
4	Feature Sets 1 + 2	54.42% /	52.06% /	0.52	0.54
4		63.32%	60.04%		
5	Feature Sets 1 + 3	59.34% /	55.52% /	0.46	0.53
		65.96%	59.09%		
6	Feature Sets 2 + 3	49.56% /	54.19% /	0.55	0.55
		63.85%	65.54%		
7	Feature Sets 1 + 2 + 3	53.13% /	52.28% /	0.53	0.50
		65.54%	66.17%		

Discussion

- From a trading perspective, we want to maximize accuracy
- However, there was a significant imbalance both in the training (62% "Up's") and the test data (64% Up's)
- Therefore the AUC score is a better choice for our model performance as it is insensitive to class imbalance
- All 7 models have a test AUC score close to 0.5, which is not a satisfactory result

Possible reason:

- > Features do not contain enough information
- Input data is noisy, and it is difficult to generalize to other periods due to the non-stationarity of our data

Future

Potential future directions for this project may include:

- Enriching our dataset. We should include non-technical features such as fundamental companies' accounting data
- Changing our prediction objective. We could try a regression model instead of a classification model. Rather than prediction "Up" or "Down", we could sort our predictions in quantiles and try to predict bucket probability
- Experimenting with different time horizons. We can explore a variety of different window sizes (many high-frequency traders consume data in milliseconds)

References

[1] R.A. de Oliveira D.M.Q. Nelson, A.C.M. Pereira. Stock markets price movement prediction with Istm neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 1419–1426, 2017.
[2] F. Cummins F.A. Gers, J. Schmidhuber. Learning to forget: Continual prediction with Istm. Technical Report, IDSA-01-99. 1999.

[3] Colah, C. (2015), 'Understanding LSTM Networks', on Colah's personal blog, available at http://colah.github.io/posts/2015-08-Understanding-LSTMs/