Implementing Multi-Class Object Detection in Soccer
Matches Through YOLOVvVS

George R. Dimopoulos
Stanford University
gdimop@stanford.edu

Abstract

The abstract should consist of 1 paragraph describing the motivation for your paper
and a high-level explanation of the methodology you used/results obtained. Due to
the existing capabilities of Al and Deep Learning, the sport of soccer is becoming
more open to using such technology to enhance the quality of the analyzation of the
sport. In particular, many improvements can be made to enhance the video quality
of televised soccer matches. This paper compares two YOLOVS models—YOLOVS5s
and YOLOv5m- which were trained on the SoccerNet dataset to classify objects
on a football pitch and draw boundary boxes around them. Although the YOLOvVS5s
model outperformed the YOLOv5m model in precision, the reverse is true for
recall; as such, further studies are needed to determine which model is truly better
at multi-class object detection of soccer videos.

1 Introduction

Soccer, or football, is a fast-paced game at all levels of the sport. As such, it is difficult for spectators
to possess a firm grasp of every element in a game: Goettker and Gegenfurtner [2021] find that
because of these moving variables, spectators have been forced to use contextual cues to determine
where the ball is at any given moment. While these predictive eye movements are highly valuable
when watching a game, the ability for a spectator to gather information is oftentimes hindered by
players’ obscured faces and numbers on their kits.

However, the ever-increasing integration of Al into the sport on an international level Price [2022]
provides Deep Learning a window of opportunity to assist a viewer’s experience watching televised
matches. For example, Deep Learning may mitigate the viewer’s difficulty to identify players on the
pitch by displaying the name of each player above their heads in real-time, which is similar to what is
seen in the gameplay of Electronic Arts’s FIFA 22:

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Figure 1: A snippet of my own FIFA 22 gameplay, with a yellow oval highlighting Bruno Fernandes’s
name above his character in-game.

This may be done through implementing multi-class object detection, where a model identifies soccer
players, referees, and the ball in-game, and creates boundary boxes around them in accordance
to their respective designation while they are on the pitch. In particular, this paper explores the
intersection between computer vision and sports by implementing two models to accomplish the
goal of multi-class object detection. The two models—YOLOv5s and YOLOvS5m-are then compared
against each other to determine which most effectively conducts multi-class object detection.

2 Dataset and Features

I used the SoccerNet multi-object tracking (MOT) dataset derived from Cioppa et al. [2022] to
classify objects on the pitch. The SoccerNet MOT dataset consists of 100 high definition (1080p)
video clips of thirty seconds each showcasing soccer footage from the main broadcasting camera
angle. In total, each video consists of 750 images, complete with ground-truth labelings and tracklets
of eight classes: player team left, player team right, goalkeeper team left, goalkeeper team right,
main referee, side referee, staff, ball.

Because this dataset is designed to be used by MOT models (such as SORT, DeepSORT, Tracktor,
FairMOT, and ByteTrack, as analyzed by Cioppa et al. [2022]), it was necessary to first preprocess this
dataset to fit the requirements of a YOLOVS model. In particular, I extracted the tracklet information
and generated .txt files corresponding to each image which contained the boundary boxes and classes
of all objects in that image. Running this newly-formed dataset on models’ pretrained weights
produced these images:

Figure 1: YOLOVSs pretrained classification Figure2: YOLOvVSm pretrained classification



3 Model Architectures and Benchmark

3.1 The YOLOVS Model

YOLO, or "You Only Look Once", is a model used to for multi-class object detection within images.
It splits the images into n cells on a grid, and determines whether a specific cell contains the center
coordinates of a classifiable object by returning the probability that it indeed does contain the
coordinate (along with the height and width of the bounding box). The model then applies non-max
suppression to the bounding box coordinates to deduce which coordinate has the highest probability
of being the true center of the object.

The YOLOVS architecture consists of four main sections: input, backbone, neck, and output Li et al.
[2022]. The input terminal contains the preprocessing of data, including adaptive image filling and
mosaic data augmentation Wu et al. [2017]. The backbone utilizes multiple convolution and pooling
to extract feature maps of different sizes from the input image Li et al. [2022]. The neck uses FPN
and PAN pyramid structures, which improve the detection capability of the model Li et al. [2022].
Finally, the output "predicts targets of different sizes on feature maps" Li et al. [2022].

)
! Backbone E g Neck detect

1 Conv ! H
i i y—
- - R -
1 1
i 13 14 15 16 17 i !
: I (! E Scale 3
5 l y
1
3 il 16 [ Cony m =ﬂ~-’i
H i
s el e X i Scale 2
HIET
6 i A—
i - . B
1
7  Conv |
(10 21 - 3 : Scale 1
1 1 1
H H H
i8 i i
1 1
1 I:
9 i 1
1 1 H
i 1" 1" !
L = | P i e ks = ) o !

Figure 3: The architecture of YOLOVS Li et al. [2022].

The main difference between the two models I am using are the amount of layers present within each
model. YOLOvSs contains 270 layers, 7041205 parameters, 7041205 gradient, and 159 GFLOPs. On
the other hand, YOLOv5m is a larger model, containing 369 layers, 20899605 parameters, 20899605
gradients, and 48.1 GFLOPs.

These two models are pretrained using the COCO dataset Lin et al. [2014], which contains over
328,000 images, 2,500,000 labeled object instances, and 91 objects types. However, these classes
do not fit those of the SoccerNet dataset; as such, I applied transfer learning to the last layer of each
model to only allow the models to identify one of the eight classes available in the SoccerNet dataset.

3.2 Baseline

The baseline of the transfer-learned YOLOVS models will be taken from the YOLOVS pretrained
precision (P) and recall (R) benchmarks after 150 epochs of training on the COCO dataset. This is
to compare my models’ abilities with to minimize the number of false positives and false negatives
with respect to the abilities of the pretrained model. Through examining the YOLOVS official GitHub
repository, I found the benchmarks to be P =.995, and R = 1.



4 Limitations

Before discussing results, it is important to first outline the limitations of this paper and my attempts
to mitigate their effects. One large limitation I encountered was my inability to use AWS due to
extenuating circumstances. Instead, I used Google Colab, which imposes an inactivity timeout to
discourage users from performing long-running training tasks.

In an effort to speed up training (and thus prevent timeouts), I trained the models on a subset of
the SoccerNet MOT dataset, consisting of 675 frames of one thirty-second video clip. Although
the models would experience difficulty testing on different video clips due to a lack of a diversified
dataset, I believe that training on the same data subset (the remaining seventy-five frames to produce
a 90/10 train/test split) will provide a result that is generalizable to any dataset given proper training.

Google Colab’s forced timeout is also the reason why I was unable to completely train the YOLOvSm
model. As stated in the prior section, the YOLOv5m model is much larger than the YOLOv5m
model; as such, it requires much more time to train. However, I will attempt to stratify the over six
hours worth of training and testing data gathered before timeout to draw comparisons between this
model and YOLOVS5s.

5 Results and Discussion

Here are the results of the experimentation on the SoccerNet datset, which includes training for 10
epochs with a batch size of 16. The graphs in red represent the YOLOvS5s model, and the graphs in
blue represent the YOLOvS5m model.

metrics/precision metrics/recall

- ebrand-18 -

4 8 10 0 2 4

Figure 4: Precision and Recall graphs of the YOLOvS5s model per epoch.

metrics/precision metrics/recall

5 6

Figure 5: Precision and Recall graphs of the YOLOv5m model per epoch.

By the tenth epoch, the YOLOvS5s model reached a precision of .9275. By the seventh epoch, the
YOLOv5m model reached a precision of .7433. The YOLOvS5s model’s precision in comparison to



the benchmark of the pretrained model (.995) is especially astonishing due to the difference in the
amount of epochs used to train each model (150 epochs in the benchmark model as opposed to 10
in my model). This could be because the training and test sets were too similar, and do not reflect
real-world situations (which would have a multitude of teams competing against each other instead
of the two same teams always competing).

By the tenth epoch, the YOLOvVSs model reached a recall of .4157. By the seventh epoch, the
YOLOv5m model reached a precision of .4603. These are far lower than the benchmark of 1 provided
by the pretrained model; perhaps the lack of a diversified training set led to the lackluster recall
results in both models.

It is worth noting the differences in the successes of each model. Although the YOLOvVSs model
achieved a higher precision after ten epochs than the YOLOv5m model achieved after seven epochs
(which is to be expected), the YOLOv5m model achieved a higher recall after lesser epochs. This
indicates that with perhaps a substantially larger number of epochs used to train both models, we may
see the YOLOv5m model achieve both a higher precision and recall than the YOLOvSs model and
therefore out-compete it.

6 Future Work

There are many venues for expansion of this project in the future. Although we arrived at the
conclusion that the YOLOv5m model may approach the benchmark with greater precision and
recall than the YOLOvSs model given enough epochs, this is merely a speculation given the current
information; training with a much larger number of epochs can truly tell whether our assumptions are
correct. In addition, although our assumptions may be correct that the YOLOv5m model approaches
closer to the benchmark in comparison to the YOLOv5s model, the recall is still lackluster; future
work could include using a more diversified training and test set (with different teams, different
amount of objects, etc.) to ensure that the models are not overfitting to one or two specific teams
within the current dataset. Furthermore, this paper only examined the power of two YOLOvVS models;
another future area of research would be to determine how effective the other versions of the YOLOVS
model (including YOLOv5m, YOLOvVS5I, and YOLOvVS5x) would be in accomplishing the goal outlined
in this essay.

References

Alexander Goettker and Karl R. Gegenfurtner. A change in perspective: The interaction of saccadic and
pursuit eye movements in oculomotor control and perception. Vision Research, 188:283-296, 2021. doi:
10.1016/j.visres.2021.08.004.

Steve Price. Artificial intelligence is changing soccer and could decide the 2022 world
cup. Forbes, 2022. URL https://www.forbes.com/sites/steveprice/2022/04/11/
artificial-intelligence-is-changing-soccer-and-could-decide-the-2022-world-cup/
?7sh=567£50c52d3e.

Anthony Cioppa, Silvio Giancola, Adrien Deliege, Le Kang, Xin Zhou, Zhiyu Cheng, Bernard Ghanem, and
Mark Van Droogenbroeck. Soccernet-tracking: Multiple object tracking dataset and benchmark in soccer
videos. 2022.

Zhuang Li, Xincheng Tian, Xin Liu, Yan Liu, and Xiaorui Shi. A two-stage industrial defect detection framework
based on improved-yolov5 and optimized-inception-resnetv2 models. Applied Sciences, 12(2):834, Jan 2022.
ISSN 2076-3417. doi: 10.3390/app12020834. URL http://dx.doi.org/10.3390/app12020834.

Chunpeng Wu, Wei Wen, Tariq Afzal, Yongmei Zhang, Yiran Chen, and Hai Li. A compact dnn: Approaching
googlenet-level accuracy of classification and domain adaptation. 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dolldr. Microsoft coco: Common objects in context, 2014.
URL https://arxiv.org/abs/1405.0312.



