Modular Music Synthesis

Eden Y Wang Drew Gao
Department of Computer Science Department of Mathematics
Stanford University Stanford University
eyw@stanford.edu drewgao@stanford.edu
Abstract

Music generation is an emerging field of generative modeling. We worked to bridge
the gap between symbolic and waveform music representations by modularizing the
generation process into a symbolic generation step and a style transfer augmentation
step. We find that we are able to tractably iterate on the generation and style transfer
step, leading to compositions with comprehensive melodies that can be accented
with non-symbolic waveform features. We find that a modular approach to music
generation is promising for work down the line.

1 Problem

Advancements in machine learning based methods for music generation is an emerging field with
novel research in a variety of tasks, including melody extraction, midi representation, and feature
extraction. Generative models of music currently work in two broad domains: raw audio (ie time-
frequency) representations and symbolic representations (often in the form of Midi files). While
less computationally intensive than working with raw audio, working with symbolic representations
of music tends to result in rather "flat" sounding outputs which do not fully capture timbre/texture
or other atmospheric (as opposed to melodic) features in music. This issue is especially prominent
when considering certain sub-genres of electronic music, including but not limited to noise, ambient,
breakcore and techno. These genres tend to feature simple melodies (if any melody is present at all)
while the most identifiable features tend to be textural, atmospheric, rthythmic or otherwise atonal.

Our project seeks to address some of the limitations of working with symbolic representations
of music by first generating symbolic representations of music then using neural style transfer to
reintroduce texture, atmosphere and other features not capture by symbolic representations. As a test
case for our model we will be attempting to generate realistic sounding tracks from the aforementioned
genres. These genres in particular make good test cases for our approach due to the relatively simple
melodic structure and extensive use of non-melodic features, but we hope insights from this work
will be useful for other music generation tasks as well.

More specifically we hope to experiment with tractable and efficient music generation methods by
using an ensemble model comprised of two modules: a midi melody generation model and an style
transfer model. Our ultimate goal is to be able to feed in the same inputs (music / genres) through
both modules to generate music from the provided distribution. Through this composite model, we
hope to circumvent traditional difficulties with working with high sample rates and computationally
intensive models, allowing us to modularize the music generation process.

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Related Work

Researchers have explored a variety of neural network architectures for music generation—both in
the time-frequency domain as well as the symbolic domain (1). Modular approaches have also been
previously explored, as can be seen here (2).

There is less existing research about audio style transfer/texture synthesis. However, style transfer and
texture synthesis methods from computer vision show promise in being applicable to audio domain
data as well (3) (4). In particular, (5), showed the potential of a single convolution layer with a large
amount of randomized convolutional layers to outperform even more advanced audio style transfer
models such as those based around the VGC-19 network.

Thus, in order to achieve our goal of generating realistic pieces of dissonant/ambient electronic music
in a computationally efficient manner, we will implement a RNN based module for MIDI melody
generation in conjunction with a shallow CNN based style transfer module.

3 Dataset

For our generative step, we used a set of publicly-available samples of short Lofi chord sequences and
samples. These samples were gathered through previous work on zacharykatsnelson/Lofi-Hip-Hop-
Generator and comprise a set of melodies and midi note patterns similar to those commonly found in
Lofi tracks. These tracks are meant to represent the distribution of Lofi music, though it is limited
in size and cannot be automatically generated. For the style transfer module we prepared excerpts
from five textually complex electronic music tracks with varrying degrees of melodic prominence
(obtained from Drew’s personal collection) as examples of styles we want to apply to our generated
MIDI melodies'.

4 Methods

4.1 Code

Our current code for each module, as well as data files and additional results can be found at our
Github repository?. Included in the folder are several samples outputted from our current generation
step.

4.2 Midi Generation

For the generative step, we developed a RNN model based on Zachary Katsnelson’s lo-fi hip hop
generator (6). This model is comprised of several recurrent layers followed by a sequence of dense
layers, with a softmax output and cross-categorical loss. Dropout and batch normalization is also
used as regularization techniques. A diagram of our overall model architecture can be seen below:

LSTM / Bidirectional LSTM (3-4) Dense / FC Layers (2-3)
A A

r 1 r 1

BatehNorm BatchNorm BatchNorm

n=512 =512

'The tracks are as follows: "Eurocore MVP" by Venetian Snares, "Hungry" by Show Me the Body feat.
Dreamcrusher, "Insular” by Operant, "No Rabbit No Life" by Blawan, and "Tha" by Aphex Twin
“https://github.com/eyw520/cs230-modular-music-synthesis



Training is performed on the lo-fi dataset above using an Adam optimizer. In addition to our above
dataset, we experimented with various mp3 to midi converters to provide a richer dataset. Midi
notes from our dataset are pre-processed, parsed, and compiled into sequences for use as input. The
pre-processing step strips out outlier notes and determines what midi note properties (pitch, duration,
intensity) will be relevant to our model. Notes are parsed into sequences, with the first &£ notes serving
as the input and predictions being performed on the £ + 1th note.

After completing 500 training epochs on k-note sequences from our midi dataset, we sample new
midi notes and chords by generating a random input sequence and sampling notes, using generated
notes as part of the next input sequence. We select the most probable note in the prediction, whether
that be a chord, a rest, or a single note. Notes are written to a stream, then saved as a midi output.

4.3 Style Transfer

We based our style transfer step based on source code provided by (Ulyanov 2016). Given 2 audio
files (either .mp3 or.wav) of equivalent length as input, this algorithm applies the short term fourier
transform to both audio files, this gives us a 2-D spectrogram representation of magnitudes of audio
frequencies over time. Since humans perceive audio intensity on a logarithmic scale, we then take the
natural logarithm of all magnitude values and use the resulting spectrograms as inputs for the style
transfer network. Each of these spectrograms is then treated as a 1x(Time)x(Frenquency) volume
on which one-shot style transfer is applied using a 1 layer convolutional neural network with 4092
random filters each covering 11 time steps and the full range of frequencies.

More specifically we use gradient descent in order to compute a spectrogram, GG that minimizes the
following cost function:

J(G) = O‘Jcontent(cy G) + Jstyle(S, G)

where G represents the generated spectrogram with the content from one input, C' and the style of
another input G, and Jeontens as well as Jg . are defined in the canonical way given in (3). We
achieved the best results when G was initialized to be equal to C' with random noise added (rather
than C itself or a purely random input). The alpha parameter roughly corresponds to the prominence
of the original content in the final result.

5 Results

5.1 Midi Generation

The original RNN model, without any changes, sampled the most probable raw note sequences
independent of note duration, rests, and velocity, leading to melodies lacking in compositional depth.
Our implementation aimed to expand on this by accounting for more complex rhythms, in addition
to a larger model architecture and the use of bidirectional LSTM layers. Hyperparameters, such
as the number of notes preceding prediction and the incorporation of rests and note duration, were
experimented with throughout the iterative process. Broader architecture structure, such as number of
dense layers and types of recurrent layers, was also explored. The training loss for several 500 epoch
runs are shown below (L to R: LSTM, no rests; Bidirectional LSTM with rests; Bidirectional LSTM,
without rests).

Output evaluation was performed subjectively; evaluation metrics in the realm of generative music
models remains an emerging field with no clear consensus on the best approaches (7). Though



reporting model loss remains an indicator of model performance, it is insufficient in determining how
well our output fits our ideal distribution. And despite the Inception score having achieved recognition
in the realm of image generation, no widely-accepted adaptation currently exists for waveform /
music generation. As results varied greatly during our experimentation based on hyperparameter
and preprocessing implementation, we were able to identify several aspects of improvement. We
primarily focused on making improvements in the diversity of our output melody and rhythm.

We found that our changes were able to introduce a greater variety of melodic and rhythmic elements
when incorporating both rests and complex beat duration. Beginning with uniform sequences of
notes, we were able to experiment with both more complex rhythmns and melodies that took into
account the full depth of the midi data. Samples can be found in our Github repository, but some
midi tracks generated through our experiments can be seen below. Note the increasing complexity
of the tracks through the generative process (displayed in Logic Pro; from top to bottom: constant
note durations and offsets, an intermediate result with rests and varied note durations, our final output
after 500 epochs of training).

e T et i e T i

5.2 Style Transfer

As with the MIDI generation module it is important to note that for this algorithm, lowest cost does
not necessarily correspond to best subjective response. However, we did notice that for fixed values
of alpha, it was indeed the case that outputs with the lowest cost tended to also be the least noisy
output in which both subjective content and style features could be identified. The following plot
shows the cost for various learning rates over the course 1000 epochs when applying style transfer.

10° 4

—— learn rate.=1
learn rate=1
~— learn rate=.01
—— learn rate=.001
—— learn rate=.0001

107?

Cost

10-2

1072

6 260 4(30 6(50 80‘0 1060
Epoch

We found that across all test cases, a relatively high learning rate of .1 resulted in the quickest
convergence to the lowest cost. Thus we fixed this parameter while adjusting alpha for the rest of our



results. We also fixed the number of epochs at 500 since improvements in the output are much less
prominent beyond this point.

The structure of our cost function tells us that higher values of alpha result in the content loss being
given increased weight when trying to optimize the output. This means that running this module
with lower values of alpha results in outputs with more prominent style features, while running the
module with higher values of alpha results in outputs with more prominent content features. This can
be observed in figures 1 and 2 in the appendix:

Furthermore it is also important to note that the value of the objective cost function does not
necessarily correspond to the subjective/human perceived quality. Thus in order to identify the best
output we have to manually test various values of alpha for each content/style pair. Also of note is
the fact that more texturally complex

Despite the relative simplicity, this algorithm is able to relatively successfully combine textures which
are similar to the "style" input file and combine them with the main melody of the "content" file while
ensuring the original content is still recognizable in the output. However, the generated textures are
often noticeably derivative of the original file (oftentimes sounding like the original "style" input with
a filter applied rather than a uniquely generated output). Furthermore when using "style" files with
prominent melodic features (such as a loud, consistent tone), these features will remain present in the
output in addition to the desired textural features.

5.3 Overall Results

Overall, we found that our greatest bottleneck was in our dataset; though midi provides a succinct
and tractable representation for musical melodies, we found it difficult to find rich midi datasets that
fully represented a given genre of music. Though we experimented with midi converters, we quickly
found that existing converters were incapable of melody extraction and incorporated extraneous noise
into the training process. Our dataset used pre-made, short sequences that were designed to capture
lo-fi musical elements, but scaling our model to different genres would require manual data grooming
to achieve comparable results. In summary, working with midi representations simplifies our model
at the cost of requiring more domain knowledge in dataset curation.

6 Conclusion and Future Work

Although our model is far from perfect, our results do show the potential for a more modular approach
to music generation where high level symbolic level features and low-level waveform level features
are handled separately.

Model success and performance was limited primarily by our lack of domain knowledge when
approaching the problem of music generation. Throughout the process of working on this project, we
have developed a far greater idea of the tradeoffs associated with various waveform and symbolic
approaches. We also have several ideas for natural extensions on this project; for instance, a third
module capable of midi melody extraction can be used to create a comprehensive pipeline capable
of generating the computational benefits described in our problem statement. In terms of pre-
processing, ensuring that our data comes from the same distributions with the same compositions
rules surrounding rests, note durations, and velocities can ensure a more replicable distribution.
However, we believe that the underlying principle behind dividing the task into various modules
remains logical, and that a modular approach reflecting the underlying data generation process has
much promise in generative applications.

7 Contributions

Eden was the primary contributor for the implementation and tuning of the midi generation module
while Drew was the primary contributor for the implementation and tuning of the style transfer
module. Both authors contributed equally to report writing, literature review, analysis of results, and
other high level components of the project.



Content

Result; Loss=6.30825786251574e-05
2 ESE =

100

150

200

250

300

350

Figure 1: Style Transfer with Alpha=.001

Content Result; Loss=0.03158710872229365

FEER L =

100
150
200
250
300

350

Figure 2: Style Transfer with Alpha=1

8 Appendix

References

[1] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription,”
arXiv preprint arXiv:1206.6392, 2012.

[2] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox: A generative
model for music,” arXiv preprint arXiv:2005.00341, 2020.

[3] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” arXiv preprint
arXiv:1508.06576, 2015.

[4] I. Ustyuzhaninov, W. Brendel, L. A. Gatys, and M. Bethge, “Texture synthesis using shallow
convolutional networks with random filters,” arXiv preprint arXiv:1606.00021, 2016.

[5] J. Chen, G. Yang, H. Zhao, and M. Ramasamy, “Audio style transfer using shallow convolutional
networks and random filters,” Multimedia Tools and Applications, vol. 79, no. 21, pp. 15043—
15057, 2020.

[6] Z. Katsnelson, “How i built a lo-fi hip-hop music generator,” 2020.

[7] L.-C. Yang and A. Lerch, “On the evaluation of generative models in music,” Neural Computing
and Applications, vol. 32, no. 9, pp. 4773-4784, 2020.



