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1 Introduction

In many biomedical experiments, how to identify and characterize the cellular composition of complex
tissues becomes a key step. Single-cell RNA sequencing (scRNA-seq) provides unprecedented
opportunities to complete these tasks. Over the past decade, technological advances have allowed
scRNA-seq technologies to scale to thousands of cells per experiment. [14] A common analysis step
in analyzing single-cell data involves the identification of cell populations presented in a given dataset.
This task is typically solved by unsupervised clustering of cells into groups based on the similarity
of their gene expression profiles, followed by cell population annotation by assigning labels to each
cluster. However, the annotation step is cumbersome and time-consuming as it involves manual
inspection of cluster-specific marker genes. Moreover, one most significant challenge is that there are
huge amount of classes. Usually dataset like the Tabula Muris[2] have a long-tail problem with some
minor classes having few numbers of training data. (See Figure 1b). In order to reduce the cost of
manual inspection and the problem caused by few-shot classes, we propose a Graph Neural Network
(GNN) model based episodic learning model. The input will be the scRNA-seq data, which is a 1089
dimension vector, and the output will be one of the 55 classes. By comparing the MLP model, GCN
model and KNN models, we showed that our model can perform better in few-shot learning problems
when the class numbers are extremely large.

2 Related work

In 2017, Zhengyan, Li, and Chi, [15] classifed lung adenocarcinoma and Squamous cell carcinoma
using RNA-Seq Data. Tey used gene expression profle to discriminate NSCLC (Non-Small Cell
Lung Cancer) patient’s subtype. To construct classifers based on the training data, they considered
methods include Logistic Regression with Principle Component Analysis(PCA), logistic regression
with LASSO shrinkage (LASSO), and KNN. Besides the traditional methods, MLP is applied in
Micheal O. Arowolo’s survey [16] with the advance of deep learning during the most recent 15 years.
They test it on the TCGA dataset and get better accuracies compared with the logistic regression and
KNN methods.

However, most of these results only report accuracy as metrics. Considering that the problem usually
has a large amount of classes and a long tail of few-shot classes, the accuracy can’t represent the
actual evaluation of the classification models. Even the model performs well in the dominant classes,
it might not as good as the accuracy shows for the few-shot classes.

To deal with this problem, the Prototypical Networks with episode learning is introduced[17]. The
paper assumes that there exists a mathematical representation of the images, in which samples of
the same class gather in groups called clusters. The main advantage of working in that embedding
space is that two images that look the same will be close to each other, and two images that are
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completely different will be far away. In each training episode, some query data will be drawn with
the neighboring samples and their labels as the support data. Then the network will project them
in to certain embedding space. And in one training episode, the model will be trained to make the
embedding of the query sample is close to embedding center of the support samples under the same
classes.

With the innovation of the prototypical network, we proposed our GNN model with episode learning.
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(a) t-SNE visualization of all FACS cells. t-SNE (b) The distribution of class samples. With the
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posing each cluster; n = 44,949 individual cells. class names are in the appendix, Figure 5.

Figure 1: Datasets information.

3 Dataset and Features

The dataset is from the Tabula Muris scRNA-seq dataset[2]. The data allow for direct and controlled
comparison of gene expression in cell types shared between tissues, such as immune cells from
distinct anatomical locations. It contains 54865 samples in total. Each sample has 1089 features
representing the dene expression. It has cells of 20 organs from four male and three female mice,
which in total has 55 classes. Figure 1a shows a visualization of the t-SNE of the dataset from the
oringinal paper, and Figure 5 shows the t-SNE visualization that we generated.

As we described in the Introduction, this dataset has a long tail problem, as Figure 1b shows. The
largest class has 8294 samples, and the smallest class has 24 samples. In order to have training data
for each class, we randomly sampled 20% in each class as testing data.

4 Methods

The basic pipeline of our model is as the Figure 2. In one episode, We firstly initialize the graph with
the original features. When we construct the graph, we computed the euclidean distance between
every pair of samples, and created an edge between a node and its top k nearest neighbors. One of the
graphs is visualized in Figure 6 in Appendix. After we construct the graph, we feed it into a GCN
network. We then optimize the GCN network based on the cross entropy loss of the classification
task.

Once the training of the episode is done, we then collect the embedding of the last layer and create a
new connected graph based on that. We then update the connected edges and weights of the edges,
and train the next episode. By doing this episodically, we are updating our graphs so that nodes in the
similar class will be connected eventually.
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Figure 2: The training procedure of our GCN model. During every episode, we firstly construct the
graph based on nodes’ neighbors, annd then feed the graph into the GCN network. The GCN network
will be trained for several epochs. Because the GCN network combines the embedding of each nodes’
neighbors, even without much training samples, the model can still learn from the nodes’ neighbors
feature.
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(a) We used a simple MLP which take all 1089 (b) In order to compare with MLP, the GCN has a
features as input, and two hidden layers with neu- very simialr architecture. It take all 1089 features
rons 256 and 64. Each fully connected layers is as input. Each node in the hidden layers has 256
followed by a ReLU activation and a Dropout with and 64 features.The activation is ReLU and the
0.5 keep prob. The output is a 55 dimension with keep prob of Dropout is also 0.5. The output is a
softmax activation. 55 dimension with softmax activation.

Figure 3: MLP and GCN models. Both of them have 299063 trainable parameters.

4.1 GCN and MLP network

For the purpose of showing MLP models can’t handle the few-shot cases, we firstly trained a MLP
model. In fact, it is also a special case of our graph construction when k=0. It only considers the
sample itself when makes classifications. If there is no enough data in the training set, it can’t have a
good classifier. As the Figure 3a shows, the network has in total (1089 x 256 + 256) + (256 x 64 +
64) + (64 x 55 + 55) = 299063 trainable parameters.

We then generate a graph by embedding the original data into a geometry preserving space [4] and
connecting each sample with its k-nearest-neighbors(KNN)[3]. Similarly as learning a prototypical
embedding in [11-13], the graph structure makes use of the neighbors of a sample, and therefore,
with the samples from a minor class, learning from the graph structure can perform better than only
considering the single node. Therefore GCN can have a better performance compared with the
traditional method and a pure MLP network, especially for the minor classes.

After creating the graph, we applied the Graph Convolutional Network (GCN)[6] as the backbone of
our model.The graph convolution layer can be written in this format:
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©7 is the trainable weight, and it has the dimension of dim(x’) x dim(x). So we set the features of
nodes in each layer equal to the hidden neurons in MLP to keep these two models has same number
of trainable parameters.

5 Experiments/Results/Discussion

For the implementation, we use PyTorch [9] and PyTorch Geometric (PyG) [10]. Most of the
operations in GNN are implemented in the PyG package. For the experiments, we have trained both
the MLP and GCN for 200 Epochs in total with Adam Optimizer. With GCN network, we actually
trained 5 episodes with 40 epochs for each episode.

We show the results in the Figure 4.
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Figure 4: Testing F1 scores of different classes. Bar colors are the same as Figure 1b. The left bar
represents the largest class. The first row shows the results from the MLP model (k=0). K means the
number of neighbors that the graph connect. And in order to show that the GCN performs well in
cases with even less samples, we also added experiments with less training data (percentage shows
the training data versus the total number in the whole dataset).

With 80% data as trainingi data, The KNN model with 7 neighbors has 94.59% average accuracy
on the test dataset. With the power of deep learning, the MLP model has 96.26% average accuracy
and the GCN model with 7 neighbors-connected graph has 96.89% accuracy. However, although the
MLP model has higher accuracy, from the F1 scores of each score in Figure ??, we can see that it
performs terrible in the minor classes, while KNN and GCN did better in those few-shot learning
cases. And the table shows the average F1 scores for different experiments.



K Avg F1(20%) AvgFI(40%) AvgF1(60%) Avg F1(80%) |

0 (MLP) 0.8643 0.8214 0.7826 0.7521
3 0.9368 0.9486 0.9684 0.9657
5 0.9465 0.9486 0.9594 0.9632
7 0.9541 0.9623 0.9680 0.9714
15 0.9657 0.9679 0.9564 0.9457

6 Conclusion/Future Work

From the results, our work shows that our model can handle the cases when there is not enough
data. For the interpretability, we are innovated by the GNNexplainer [7] method. However, since it
is designed for academic publication dataset, which is different from our case, we are planning to
modify some part in the node feature explainer part. Our idea is to figure out the interaction between
the gene expression features instead of merely showing which features are important.

7 Contributions

All of the coding work is done by Hongyi Ren. The training work is done on the servers and sponsored
by Prof. Lei Xing, Radiation Oncology department, Stanford.
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